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Abstract

Consistent terminology is important for successful communication be-

tween two parties. If two parties do not agree on a common term for

a component in their project, the resulting inconsistency leads to con-

fusion and misunderstandings. In Natural Language Processing (NLP)

this type of terminological inconsistency is called coreference since there

are multiple terms that refer to a common entity. However, a pronoun

that refers to its noun is also considered a coreferences. Our goal is to

find coreferences among project components only. Thus, in this thesis,

we introduce the novel term Component Coreference Resolution (CCR)

to differentiate our task from other coreference resolution tasks. In addi-

tion, we propose a pipeline to automatically find component coreferences

to aid authors in maintaining a consistent terminology. This is especially

relevant if authors from different backgrounds work on shared documents

as is the case in requirements engineering. To evaluate our pipeline, we

manually constructed a test dataset based on public project requirement

collections. This allowed us to control the number of coreferences in the

test set precisely.

Our proposed pipeline is build on word vectors. These vectors attempt

to capture the meaning of a word as a vector in a high dimensional vector

space. For the CCR pipeline we explore three different word embedding

models. To adopt publicly available weights for these models to the do-

main of the test set, we use unsupervised fine-training. Many terms are

not single words but rather a phrase. To combine the individual vectors

of the multiple words into a single phrase vector, we then systematically

explore different phrase-, layer- and subword-pooling strategies. These

pooling operations create a phrase vector with uniform length for any in-

put phrase regardless of its length. Finally, to determine if two vectors are

coreferent, we compare the resulting phrase vectors. For the comparison,

we test cosine-similarity, Jaccard-Index and DynaMax.

During evaluation, we choose to place high emphasize on precision and

its correlation to the underlying similarity score. This ensures that our

results can be ranked by their similarity. We found that the Jaccard-Index

significantly outperforms the generally recommend cosine similarity. Fur-

ther, we contribute additional evidence that domain fine-trained models

can outperform generalized supervised models.
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1 Introduction

Many statements have more than one plausible meaning. This ambiguity is

a feature of natural languages. In casual conversation, ambiguity is often in-

consequential or can be resolved by facial expressions, tone of voice, or simply

because we are familiar with the other person. In writing, it is more difficult to

avoid ambiguity, especially, when writing to a general audience. Often we are

convinced that we have written a concise and easily understandable text, and

yet we later find out that the reader did not understand what we meant. Or

worse yet one might misunderstand us but is unaware of it and proceeds to carry

out the wrong instructions. While ambiguity is an essential aspect of natural

language, outside of witty word puns, it is mostly resolved subconsciously.

In this thesis, we will focus on a specific source of ambiguity: synonyms. Tra-

ditionally, synonyms are not considered as a source of linguistic ambiguity. A

synonym should, by definition, not significantly alter the meaning of a sentence

when exchanged. By extension, replacing words with words that convey the

same meaning (synonyms) will not change whether or not a sentence is ambigu-

ous. We will discuss multiple definitions of synonyms in subsection 2.4. For now

it is sufficient to note that we can deliberately make similar concepts more dis-

tinguishable by using a distinct term for each. If done consistently this aids the

reader to differentiate between two similar terms. Frequently used terms then

often get shortened and slowly establish as part of a new terminology for the

field. Consider the following example adapted from [Rob+16] which describes

the requirements two different stakeholders have for a web gallery.

”As a visitor, I am able to view the gallery, so that I can see inter-

esting photos about the event region.”

”As an administrator, I am able to edit existing media elements of

a media collection, so that I can update the content.”

The two user requirements are written from two different perspectives and as

such, the language used by the visitor is more casual whereas the administrator

uses a more technical language. As such, photos and media elements proba-

bly refer to the same component. We call any two phrases that refer to the

same concept coreferent. As such, photos and media elements are probably

coreferent. The media collection, however, might refer to the gallery from the

first user story, but it could also refer to an internal data structure. As such,

media collection and gallery are potentially coreferent. These instances should

still be detected and flagged for a manual review process. As we can see, it

can easily happen that two separate authors work on a requirement set and

use distinct vocabulary despite describing the same thing/component/concept.
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The goal of this thesis is to compare different approaches that are able to find

potential coreferences in a set of project requirements in an automated manner

and present them to the author for review. The author can then resolve actual

coreferences leaving only conscious distinctions. In more technical terms, we

are trying to resolve coreferences between the terms used to describe project

components. This specific task has received little attention in the research com-

munity so far and as such, no term for it exists yet. We propose the novel term

Component Coreference Resolution (CCR).

To tackle this challenging task, we base our work on established methods for

text similarity. The challenge is to find a similarity measure that handles the

non trivial cases where two phrase have the same meaning but different spelling.

Traditional text similarity methods were limited to syntactic features like com-

paring how many characters need to be changed to transform one input to the

other. Recent advances in machine learning created a new category of similar-

ity measures that attempt to also consider the semantic meaning of a phrase

during comparison. We aim to provide a broad but coarse literature review of

machine learning methods for text similarity to identify works we can utilize in

the CCR task. We propose a pipeline based on the most promising methods

to address the CCR task. Unlike previous methods, [Wan+20], our pipeline

solves the CCR task in a end-to-end manner requiring no additional inputs or

annotations to the input. Requirements engineering is a field that requires fre-

quent introduction of new terms to name components unique to the project.

Therefore, we will use requirements engineering as a case study for the CCR

task and assume the inputs to our system to be requirements for which we want

to identify coreferences.

In order to evaluate our pipeline, we need a set of requirements where we know

all coreferences. We can then compare these against the predictions of the

the pipeline. While there are previous publications addressing coreferences in

requirements engineering, neither published the dataset that were used. Thus,

in order to evaluate the pipeline, we construct our own dataset based on publicly

available requirement specifications. Thus, we not only define the CCR task but

also provide a public test dataset along, with benchmarks of our pipeline for it.

Assuming we can resolve all coreferences, a coreferent free requirement set has

multiple advantages. First and foremost, the reader can be sure that if two dif-

ferent terms are used that this is intentional and signals a necessary distinction

between similar terms. On the other side, the reader can be sure to find all

requirements relevant to a project component simply by searching for it. As

such the ambiguity of the requirement set is reduced. Merging all coreferent

terms leaves only essential terms which makes building a glossary easier.
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The remaining thesis is structured as follows: In section 2, we will cover lin-

guistic concepts behind synonyms and coreference and how we can distinguish

between the two. We will then discuss the grammatical properties of coreference

phrases. The core of our CCR pipeline is based on semantic text similarity. In

section 3, we will summarize recent advances in text similarity measures. These

advances have been made possible by complex neural networks that are able to

map the meaning of a word to a vector. Our pipeline is able to differentiate

coreferences from unrelated texts by comparing the vector representations cre-

ated by these neural networks. Before we can present the pipeline in section 5,

we briefly familiarize the reader with the constructed dataset in section 4. We

discuss different strategies to adopt the selected neural networks to best ad-

dress our CCR task. we then come up with a set of configurations to test on

the dataset. In section 6, we show that the proposed pipeline achieves results

that are significantly better than traditional syntactic similarity methods. We

also investigate each configuration parameter separately. This reveals that well

established parameter choices like the use of cosine similarity to compare vectors

can be replaced by alternatives that are superior for our application. Finally,

we offer potential improvements that could be added to the proposed pipeline

in section 7 and conclude in section 8.
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2 Linguistic Background

2.1 Requirements

The input to our CCR task will be a list of project requirements. In RE a

requirement specification document contains all information a developer needs

to implement the product. Every function, interaction and property of a project

is recorded in a separate sentence. Each sentence should only contain a single

functionality. These sentences are referred to as requirements. The core of the

specification document is a list of requirements. The following is an example of

three individual requirements from the Clarus project[Fan+18]:

(1) The Clarus system shall implement quality checking processes

as soon as data become available.

(2) The CAS shall enable administrators to manage quality check-

ing rules.

(3) The Clarus system shall record the methods applied when de-

riving quality checking information.

While a typical requirement specification document also provides additional

texts such as an introduction or a section for the scope of the project, these

parts are intended to give a vague idea of the project. The set of individual

requirements by itself should specify a complete, correct, feasible, prioritized,

and unambiguous product. In this thesis, we will be using a set of requirements

as input and identify if a product component has been referred to multiple times

using different phrases, as explained in subsection 2.6.

2.2 Word form and meaning

We will adopt the terminology as introduced in [Mil+90]. The term ”word”

is used for both the series of characters (utterance) as well as for the concept

behind the string of characters. To resolve this ambiguity we will refer to the

former as word form and latter as either word meaning or word sense. We

refer to a series of words as a phrase. A phrase can be a single word form but

might include multiple word forms into a unit. Phrase form and phrase sense

are defined in analogy to word form and word sense. For most word forms the

exact meaning depends on the context in which it is used. Conceptually the

context encompasses all the knowledge that is associated with that occurrence

of the word. For example:
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Grid points must be spaced at most 500m apart.

From this immediate neighborhood, it is impossible to properly determine the

exact meaning of grid. However, if we also knew that this is a requirement for

a power grid in Example City we would not only know that a power grid is

meant but could actually narrow down to a specific power grid. A word form

is monosemous if its meaning in any context only differs slightly and can be

grouped into one abstract definition. To sail, for example, always refers to some

form of gliding/traveling through a liquid or gas. The description, here ”some

form of gliding/traveling through a liquid or gas”, of the word sense, is called

a gloss. Other word forms such as “glass” have multiple meanings. One word

sense for the material we use in windows and the other for the glass that we

drink from. These types of word forms are referred to as polysemous. Linguists

[Gil96] further differentiate between multiple meanings that can be traced back

to a common concept (polysemous) and those with distinct origins (homonyms

e.g. bank). However, since [AJ19] showed that University English majors are

unable 1 to differentiate between these two concepts we consider their distinction

purely academic. We will therefore refer to any word form with more than one

meaning as polysemous. How many senses a particular word has, whether glass

actually has two senses or if we can group all of its uses into one sense is up for

debate. For a more detailed discussion we refer the reader to [EP07]. Further

many word senses have multiple word forms that can express it e.g. to execute

and to carry out. Thus the mapping from word form to word sense is a many to

many map. Note that rows in Figure 1 express a group of synonym word forms.

We will further discuss synonyms in subsection 2.4.

2.3 Lemmatization

We call the lexical form of a word form its lemma. Sometimes lemmas can

also be called the lexicalization of a word form. For most humans, the act of

lemmatization comes naturally. We know to look up the verb went under to go

in a dictionary. Rather than listing all inflections as separate entries, most dic-

tionaries record just the lexical form. This helps to keep the size of dictionaries

to a somewhat reasonable level. While the physical size of dictionaries is not

a big concern nowadays most efforts to systematically record relations between

words still record these connections only between lemmas. If we want to take

advantage of these resources we need to be able to lemmatize any input, for

example:

1with an accuracy 46% on a binary task
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Figure 1: Many-to many mapping between word form and word meaning. From
[Mil+90]

the boy’s cars are differently colored

the boy car be differ color

There are a number of challenges any lemmatizer needs to solve. First, most

languages have irregular word forms e.g. go, went, gone. These need to be

handled separately from the regular forms. This includes words that seem to

be inflected but are actually a lemma e.g. walking is an inflection of walk but

bring is not an inflection of bre. Finally, the inflections of two separate lemmas

might share the same word form. For example the German word form gehören

can be the inflection of hören (to hear) or gehört (to belong). Fortunately, these

ambiguities are quite uncommon. [KGS20] found that for English datasets less

than 1% of the tokens have ambiguous lemmas.

Lemmatizers are usually evaluated on linguistic treebanks. A treebank is simply

a document with syntactic annotations. The term treebank makes sense if we

consider that each sentence forms its own syntax tree. Some tree banks have

also been annotated with semantic information which allows us to identify the

correct lemma for a word. Current approaches [Qi+18; KGS20] manage around

95% accuracy on English texts. A recent evaluation [ORD19] found that we

can expect similar accuracy on German texts even with approaches [KGS20]

that can handle multiple languages. Languages like Japanese still significantly
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benefit from language-specific models [Tak+18].

2.4 Synonyms

Before discussing coreferences in more detail it is helpful to briefly conceptualize

synonyms. We will then extend the mental model we developed for the synonyms

to coreferences in the next section.

The collective understanding of synonyms is a word pair where one word can be

exchanged with the other without altering the general meaning. When search-

ing for synonyms online we are given results and tools that help writers diversify

their texts by offering more rare and extravagant alternatives. Despite this in-

tuitive and common understanding of synonyms, there is no scientific consensus

on what constitutes as a synonym pair or how to define it. Instead, linguists

explore how synonyms are used and in what circumstances.

2.4.1 Strict synonyms

Strict synonyms must be able to replace each other in any context without

changing the meaning of the sentence. As such both words of a synonym pair

must convey the same idea and their manifestations must be indistinguishable.

For example trousers and pants. Both words share the same idea or concept

(intensional definition) of a piece of clothing that covers the legs by wrapping

around each leg individually. While this is not a perfect definition for pants the

point is that based on our mental image alone we can not distinguish between

pants and trousers. Further, this also holds for the physical manifestations of

pants/trousers so their extensional definition is also equivalent. Nevertheless

one can still argue that this is strictly speaking still not a synonym. After all,

they convey a regional difference since in North America pants is used almost

exclusively whereas trousers is more commonly used in Great Britain. Due to

this regional difference, we also tend to think of pants as looser fitting. As

such these terms are not truly and universally interchangeable. Even a minute

differences such as Aluminum and Aluminium can convey a regional difference.

Thus depending on the definition, strict synonyms either do not exist at all or

are very rare.

1Note that the spacy implemention has been updated since the release of the study.

8



Figure 2: Conceptual definition of linguistic terms in a meaning space. Lemmas
with more than one distinct meaning, here red arrow, are called polysemous.
Two lemmas that can be mapped to overlapping regions are synonym to each
other.

2.4.2 Partial synonyms

Synonym pairs that do not change the meaning of a sentence significantly when

exchanged are called partial synonyms. While strict synonyms provide a valu-

able theoretical concept the distinction provides little benefit for practical tasks.

Therefore we will refer to partial synonyms simply as synonyms from here on.

Still what constitutes a significant change to classify an example into a synonym

pair or not depends both on the context and personal preference. However, in

our experience, there is a wide range of examples that can be classified as syn-

onyms independent of personal preference. And then there are instances in

which two words are on the border between being synonyms or not. Here per-

sonal preference and setting (novel, poem, mail, document, etc.) can lead to

different classifications. What makes this even more difficult is that the simi-

larity of two words can depend on their context. For example:

to run - to execute

Please run the diagnostic tools.

The regime executed thousands of innocents.

It is evident that we can exchange run with execute in the first sentence but not
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in the second one. For the word “execute” from the previous example there are

two-word senses. First to kill and second to carry out a task. One approach that

we will discuss more in-depth later is to maintain a list of all word senses for

each word and then a list of all synonyms for each word sense. However, even

if we had such a list for the time period and language that we are interested

in, automatic synonym detection would still not be a trivial task. In order to

use these lists, we need to be able to determine the correct word sense for a

word. This task is known as Word Sense Disambiguation (WSD) and can be

more formally defined as: WSD algorithms take as input a word in context and

a fixed inventory of potential word senses and output the correct word sense for

the context. [JM20]. Identifying the correct meaning of a word is crucial for

most Natural Language Processing (NLP) tasks and as such it has a long history

in computational linguistics. We will come back to WSD in subsection 2.7.

The previous issue all dealt with the difficulty of transferring the human lan-

guage comprehension to a machine. There is however another set of problems

where even humans can not come to an unanimous decision. For example:

distinct (apparent, obvious) - sharp (distinct, well defined)

She felt a distinct pain in her left knee.

There was a distinct edge in the otherwise smooth wall.

In the first sentence, we would argue that the exchange does not really alter

the meaning of the sentence. For the second sentence, we intended to keep the

same word senses regardless of the change of context also masks the meaning

the word adds to the sentences. To add to the confusion another sense of sharp

(cutting, edge-like) could also be used in either case. As such the use of an

adaptable word such as sharp confuscates the intent of the author. Instead, the

reader gets to slightly shift the meaning to their own personal preference.

So far we have seen that synonym relations connect not between words but

word senses. Further word senses are themselves not completely fixed in their

meaning. Conceptually we can think of word senses as complex shapes in a

continuous meaning space. Each context a word is used in then masks parts of

all the associated meaning area of a word sense, Figure 2. This can mask the

entire regions of some word senses while leaving the area of another word sense

partially unmasked. Each word sense area is defined by the current collective

use of the language. Therefore the meaning area of a word sense can change over

time and also by geographically separate groups. Some words can also change

their word sense entirely. The word gay, for example, was primarily used to

describe something as carefree, colorful, or happy before it received an entirely

new word sense around 1960. And by 2021 the previous word sense has mostly
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vanished in favor of describing homosexuality. However, at least conceptually

our meaning space stayed the same and just the areas and positions of the

word senses of gay changed. The area of this new word sense has a large overlap

with the word sense from homosexual and therefore they can in some contexts be

used interchangeably. This also helps to conceptualize that some word senses are

more synonym than others by defining the similarity through the contextualized

overlap between two word sense areas.

2.5 Coreference resolution

Coreference Resolution (CR) is the task of identifying all textual references

to the same entity. Unlike synonyms, coreferences can be phrases. Just like

synonyms are two word senses that overlap in our conceptual meaning space, two

coreferent phrases overlap in our conceptual meaning space, Figure 3. Finding

a mapping from word forms to some meaning space is already tremendously

difficult and far from being solved. To map phrases we not only need to consider

the individual word senses that make up the phrase but some phrases carry

meaning beyond the individual word senses. We discuss practical approaches

for word and phrase meaning mappings and their many shortcomings in the next

chapter, section 3. Any model that attempts to present the meaning of words

with a vector as we did in our conceptual meaning space is called a Vector Space

Model (VSM). Another difference to synonyms is that coreference only really

makes sense for entities and not for verbs or adjectives. As such coreferences

are always (pro-)nouns or noun phrases. Yet another difference is that unlike

synonyms the referents are not necessarily exchangeable. Consider the following

example in Figure 3:

Figure 3: Example of ambiguity in pronoun coreference resolution. Graphic
from [ZZS20]
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it can not be exchanged with fish and as such, they are not synonym. This is the

most common type of coreferences, called an anaphoric reference. An anaphora

is a reference back to another phrase that determines the anaphoric meaning,

[Mit99]. The anchor phrase of an anaphoric is called the antecedent. In Figure 3

arrows indicate the reference from anaphor to the antecedent. While anaphors

can not generally replace the antecedent the antecedent itself can always replace

the anaphora. The most obvious and trivial form of coreference is if we use

the same phrase multiple times2. As multiple mentions of the same phrase

are trivial to resolve we want to convert any other coreferences in requirement

specifications to trivial (first-order) coreferences.

Pronouns are a common source of anaphors. While the correct resolution of

pronouns is crucial for text comprehension and many downstream tasks they

are easily resolved by humans. In fact, even instances that contain multiple

ambiguities can be resolved unconsciously. Consider the following example from

[Ng17]:

The Queen Mother asked Queen Elizabeth II to transform her sister,

Princess Margaret, into a viable princess by summoning a renowned

speech therapist, Nancy Logue, to treat her speech impediment.

In the example are three coreferences (1) (Queen Elizabeth II, first occurrence

of her), (2) (sister, Princess Margaret, second occurrence of her) and (3) (Nancy

Logue, a renowned speech therapist). To resolve the second ”her” we consider

that Princess Margaret needs to be transformed into a viable princess therefore

it is most probable that the speech impediment affects Margaret, not Elizabeth.

Thus we had to apply both world knowledge and logic to resolve the pronoun.

This illustrates the difficulty of pronoun coreference and in fact, it has been

compared to the Turing test. However, this also illustrates that even complex

pronoun constellations are unlikely to confuse a reader. Thus we do not consider

pronoun and other local coreference resolution problems relevant for resolving

ambiguities in Requirements Engineering.

Cross Document Coreference Resolution (CDCR) [BF08] focuses on long distant

Coreference Resolution not just in a single document but across a wide range of

documents. The term document is somewhat ambiguous but CDCR focuses on

finding coreferences between substantial documents that are not directly related.

For example finding coreferences in webpages or between books. Coreferences

within one project as we are interested in for CCR is not considered. CDCR

introduces an additional challenge since identical phrase forms do not necessarily

refer to the same entity across multiple documents as they can be from different

2This assumption does not necessarily hold across multiple documents
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domains [DW15]. One can also consider CDCR as a specific type of document

search task. The task would then be to find all coreferences of the search

query. As CDCR is connected to search engines many approaches focus on

computational feasibility on large document sets such as web indexing. Further,

these methods focus on finding the most relevant results but do not attempt to

achieve good recall metrics.

Many end-to-end CR approaches we could find use a supervised learning ap-

proach and rely on annotated datasets such as OntoNotes ([Hov+06]), ECB+

Corpus ([CV14]) or ACE05 ([Wal05]). All these corpora adopt the entity cat-

egories3 established by ACE. Unfortunately, these types do not capture the

phrases that would describe product components, which we are interested in.

If a sufficient RE dataset should be available in the future CDCR methods do

provide an interesting analog as they provide more sophisticated alternatives to

simple pairwise comparisons, see [Jos+19; KR20; Lee+17; HLL20].

2.6 The component coreference resolution task

This thesis aims to assist in the creation of consistent terminology in highly

specialized domains through the resolution of coreferencing phrases. We will

explore this aim with a case study on a set of software requirements. Require-

ments define a novel project and as such the more opportunities for inconsistent

terminology. To the best of our knowledge [Wan+20] introduced coreference

resolution to the field of Natural Language Processing for requirements Engi-

neering (NLP4RE). While coreference resolution perfectly describes what we are

trying to achieve, many different branches such as anaphora resolution focus on

entirely different aspects of CR. As such we believe it is beneficial to propose the

new term of Component Coreference Resolution (CCR) to differentiate the task

from other branches of CR. We choose the term component to indicate that

we are only interested in phrases that are relevant components of a described

project rather than any noun phrase. We also decided against entity as it is too

widely and named entities too narrowly defined.

CCR is the task of identifying non trivial coreferences between components in a

list of sentences. The sentences in the list are assumed to be related such that

identical phrases are always coreferent. Identical phrases are therefore trivially

coreferent and not considered. A component is any for the project relevant

entity that can be isolated and defined. Typically, any phrase that one would

3ACE types: Person, Organization, Location, Facility, Weapon, Vehicle, and Geo-Political
Entity (GPEs). Each type is further divided into subtypes (for instance, Person subtypes
include Individual, Group and Indefinite).
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expect in a glossary for the list of input sentences qualifies as component. In

any real document we would need to compare every component we extract with

all other components. However, the core of the CCR task is the comparison of

two sentences. In our case study these sentences happen to be requirements.

For a pair of requirements we need to identify their project components and

then compare components. We will focus exclusively on this core component of

CCR. We assume input and output to the CCR task as:

Input: Sentence pair

Output:

{
Coreferent pair if Input contains coreference

Empty else

Example:
Input: [”The Clarus system shall be able to implement qual-

ity checking rules for each environmental parameter.”,

”The Clarus system shall display unused environmental

variables.”]

Output: [”environmental parameter”, ”environmental vari-

ables”]

Given a model that can produce the output as specified we can extend this

to cover any list of requirements. We simply call the model for every possible

requirement pair. There are certainly more elegant solutions but we will leave

those to future works.

2.6.1 Linguistic features of project components

Here we will have a closer look at product components and their linguistic

features. First, we should note that project components are in part unique

and as such, they form a project-specific terminology. Unlike terminology in

established fields, the terminology in Requirements Engineering (RE) is much

more susceptible to variation as no commonly known and accepted consensus has

been reached since a novel product is being specified. In other words, RE often

needs to define new project-specific terms. Thus, two authors may come up with

different terms for the same concept. Since these terms are new they are non-

lexical. However, it is reasonable to assume that they are formed similarly to

their already recorded lexical counterparts. [JK95] examined the terms used in

English documents from four different domains; fiber optics, medicine, physics

& mathematics, and psychology. As these are established fields they simply

picked 200 terms from a lexicon of each domain for a total of 800 samples.

They found that the average number of words per term is above 2, except for
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the medical domain. They reason that this is due to the more dominant usage of

Latin terms. Many of the used Latin terms have multiple Latin root words and

would actually be multi-word terms in English. For example, tendonitits has

two roots tendon and itis. Further out of the 800 only 35 terms did not contain a

noun. This differentiates the task from synonym detection as synonym can also

be found between verbs and adverbs. To actually identify potential coreference

phrases we will make use of the finding:

Almost all terminology (92.5%-99%) contains nouns indepen-

dent of domain.
(1)

We will highlight critical aspects throughout the literature review like Finding 1

and later base the design of our CCR pipeline on these findings.

2.6.2 Sources of ambiguity in requirements engineering

As pointed out in [Kam05] most linguistic ambiguities do not cause trouble

in requirements engineering as they can be easily resolved. However there is

extensive evidence4 that terminological inconsistencies such as coreferences can

cause misinterpretations and need to be addressed. To summarize, the proposed

CCR task identifies if two phrases should be unified, which in turn creates a

consistent terminology within the requirement specification.

In general, there are two steps to address terminological inconsistencies. First

inconsistencies have to be identified and then they can be resolved in a sec-

ond step. We will focus on the identification step of the CCR task in this.

Some approaches work a similar problem none of them disclose their datasets

[Wan+13; PLM15; DSL18; Wan+20]. While it is understandable that datasets

from industry partners can not be published it makes comparisons significantly

more difficult. We address this issue by providing a small but public valida-

tion dataset for the CCR task. Unfortunately, the data sparsity does not allow

for supervised models to rely on it for training. As such we will propose an

unsupervised approach.

We do not further discuss resolution strategies and user interactions in this the-

sis. We want to emphasize that a real word application of coreference resolution

requires information visualization to properly communicate the found corefer-

ences to the authors. [LC99] proposed a general user interface for requirement

defects that provides context information and proposes a resolution that the

4[Wan+13; PLM15; DSL18; Das+21; TH19; JK95; Kiy+08]
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user can accept or edit. While the proposed interface is simplistic it shows that

the identification of requirement defects is not enough. [DSL18] showed that

good visualization of coreferent phrases can significantly help to resolve coref-

erences. They developed an information visualization tool specifically for user

stories that can be clearly associated with a stakeholder group. They report

an average recall of 0.344 without their tool and 0.68 recall for the group using

the tool despite both groups access to the same raw tool data. This shows that

the correct representation of coreference pairs is crucial. However, even the best

representation is ultimately constrained by the quality of the identification step.

2.7 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the task of identifying the meaning of a

word given its context. If two words share a meaning they should be coreferent.

Initially, this sounds exactly like our CCR task but with a focus on word senses

rather than phrase senses. A Knowledge Base (KB) is just a collection of word

senses and the relations between collected word senses. Most WSD approaches

treat the task as a classification problem. For a given sentence we will then

need to identify the corresponding word sense. The list of possible word senses

for each word is taken from a KB.

2.7.1 Word Networks

There are several ongoing projects dedicated to finding and defining every word

sense of all words found in a given language. They manually record word form to

word sense mappings and even some sense to sense relations such as synonyms.

Since human knowledge is encoded in a lexical manner these graphs are called

lexical knowledge bases (LKB). Just like a lexicon the keys in WordNet only

record the lemma, subsection 2.3, of each word. Unlike a lexicon, WordNet

[Mil95] has to differentiate between different word senses in order to capture

word sense relations such as synonyms. They do this by recording multiple

separate versions for each word sense of a lemma. For example, if we wanted

to look up the word trashed we would first need to find the lemma trash and

would get the following results from WordNet:

trash.n.1 worthless material that is to be disposed of

trash.n.2 worthless people

trash.n.3 nonsensical talk or writing

trash.n.4 an amphetamine derivative (trade name Methedrine)
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trash.v.1 dispose of (something useless or old)

trash.v.2 express a totally negative opinion

Each entry is a sense of the word trash along with its type (noun or verb) and a

number that simply counts the senses. We can then pick a single word sense and

query WordNet for any linguistic relation to other word senses. For example

if we asked for synonyms of trash.n.1 it would report [rubbish.n.1, scrap.n.2,

waste.n.1,...]. Thus in order to use tools like WordNet for CCR we need to be

able to correctly lemmatize words and then pick the context-appropriate word

sense out of the list. Selection of the correct word sense is the WSD task in-

troduced above and will be further explored below, subsection A.1 later in this

chapter. However, we have already seen that lemmatization, subsection 2.3,

comes with its own challenges. Current methods achieve around 95% accuracy.

This is certainly impressive however considering that the average A4 page con-

tains around 500 words we can expect around 25 lemmatization errors per page.

So even before we address the significantly more difficult WSD this provides a

barrier to the use of LKB.

Among the most well known efforts is WordNet [Mil95]. WordNet is only for

the English language and captures not only synonym relations but also hierar-

chical relations5. WordNet is an ongoing research objective and as such it has

received numerous updates [MM02] [MR19] since its initial publication. Some

continuations are published under a different name such as BabelNet [NP12].

While some publications are working on other languages, e.g. [Bak+21], the

English WordNet has received more attention and contains the largest number

of relations. Any of these systems are essentially large graph structures that

can be manually and procedurally extended. As such it is difficult to compare

these methods with machine learning approaches. We can compare the num-

ber of synonym relations captured in each graph. We are also able to create a

benchmark task where we can evaluate different machine learning approaches

against each other. However, publicly evaluating a graph of synonyms on a

public benchmark task is futile. Not only does it require two other challenging

tasks, lemmatization and WSD, to be solved but any public benchmark could

easily be solved by the next publication by adding the benchmark entries to the

graph for a perfect score.

To summarize graph structures are limited by their vocabulary and recorded

synonym relations and without significant manual efforts unable to adapt to

new domains. Further, even a theoretical complete synonym graph would be

difficult to utilize in an automated system as the required disambiguation of

word senses and lemmatization are itself open fields of research. We provide

5Such as hypernyms, homonyms, meronyms, troponyms, and antonyms
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an example of a WSD algorithm in Appendix A. A more complete overview of

knowledge bases can be found here [Nav18]. For later we will keep in mind that:

WSD algorithms that use a KB can not directly be applied to

phrases. Do to the inherent structure of KB they only work on

single words.

(2)

3 Semantic Similarity with Vector Space Model

The goal of vector space models is to find a mapping from natural language to

such a meaning space. This is the conceptual space we introduced in subsec-

tion 2.4. The goal is to find a vector for each word that encodes not only its

meaning but also semantic relations. The hope is to place similar words closer

together and also encode semantic relations at the same time. This would allow

for semantic operations like E(Queen)-E(Female)+E(Male)=E(King) where E

is our hypothetical embedding to the meaning space. Given an ideal embedding

the phrases that are tightly clustered together should all be coreferent. Our

hope is to find a semantic embedding that maps phrases in a way that allows

us to differentiate between coreferences and random phrases. We will spend the

rest of the chapter covering the general ideas of word embeddings and the major

breakthroughs of the last decade.

As it turns out constructing such a mapping is a rather difficult endeavor that

has kept the research community busy for the better part of a century. Most

approaches are based on the distributional hypothesis which states that words

that occur in similar contexts tend to have similar meaning [Har54]. Consider-

ing how crude this definition of meaning is it yields surprisingly robust meaning

spaces with an unsurprising number of shortcomings.

3.1 Statistical word embeddings

The first and most broad interpretation of context was that of a whole docu-

ment. What exactly constitutes as a document is task dependant but for each

document, we simply count how often each word form occurs. Each row, Fig-

ure 4, represents the distribution of a word form across different documents.

According to our hypothesis, these rows should embed the semantic meaning of

a word form as a vector. Therefore these vectors are referred to as word em-

bedding or simply word vectors. Despite the crude approach, [SWY75] showed

the usefulness of term-document matrices for search queries. This approach was
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Figure 4: Term-Document matrix. Source not determined, found online6.

refined by reconsidering what context to use. A term:term matrix records for

each word form how often each other word form occurs in the same sentence.

Thus sentences now replace the documents as a more local context. As such we

get a lot more context samples from the same documents. Instead of consid-

ering the whole sentence as context, we can also consider k words before and

after each occurrence of the target word. This results in the simple count of

co-occurrences of word forms in a k neighborhood. The resulting matrix, Fig-

ure 5, will be quadratic and symmetric and each row and column represent one

entry in the vocabulary. However, our resulting vectors will be heavily biased

since some words naturally occur much more frequently than others. If a tar-

get word form co-occurs with a common word form such as ”The” it tells us

much less about the meaning of our target than the co-occurrence with a rare

word. Among the most popular approaches to address this statistical bias are

inverse document frequency [Spa88] and pointwise mutual information [CH90].

For a better overview of statistical vector space models, we refer to the survey

by [TP10]. Finally, we can use dimensionality reduction methods to enforce a

6https://medium.com/analytics-vidhya/featurization-of-text-data-bow-tf-idf-

avgw2v-tfidf-weighted-w2v-7a6c62e8b097
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Figure 5: Co-occurrence matrix with a context window of 3 around the target
word. For each word in each sentence we can then record its coocurances.

Figure 6: One-hot encoding with a toy vocabulary of 6 words.

greater correspondence between contexts and improve similarity measures. Tra-

ditionally, due to the computational and memory requirements, Singular Value

Decomposition (SVD) was only applied to the smaller term:document matrices.

This explicit statistical approach remains relevant today and is utilized in more

recent word embeddings such as Glove [PSM14].

3.2 Neural word embeddings

Many recent advances have been powered by neural networks. [Mik+13] were

the first to successfully apply a neural network to word embeddings and demon-

strate some capability for semantic operations. Their word2vec model works by

using neighbourhood around a target word form as input and then the network

should guess the target that we removed from the input. As neural networks

are essentially matrix operation, the text input needs to be converted to a vec-

tor representation first. For this they use one-hot encoding to transform the

input neighbourhood to a vector. One-hot encoding, Figure 6, is a vector of

the size of the vocabulary that can encode a single word. To represent a word

the dimension that corresponds to that word is set to 1. It is called one-hot
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encoding because only one dimension will be set to 1 at a time. As a semantic

embedding one-hot encoding fails but we only use it to convert word forms to

a uniform and sparse vector representation. Providing the whole context with

one-hot encodings at once to the network as input is called continous bag of

words (CBOW). Skip-Gram creates target context word pairs instead and thus

splitting a single context into multiple samples that are forwarded through the

network individually. The following example illustrates the {input, output} for

CBOW and Skip-Gram tasks:

Sentence The man who passes the sentence should swing the sword. [Mar11]

Target swing

Window 5

CBOW {sentence should the sword, swing}
SkipGram {swing,sentence}{swing,should}{swing,the}{swing,sword}

Note that SkipGram predicts the neighbourhood from the target word and

CBOW predicts the target word from the neighbourhood. As with all neu-

ral networks the model is trained by feeding samples one at a time through the

network and computing how the network flow needs to be adjusted based on an

objective function. As can be seen in Figure 7 depicting the Skip-Gram task we

use a one-hot encoded word (swing) as input and its word pairs as the target

(sentence/should/the/sword). As with any one-hot encoding the vectors have

the same size as the vocabulary. During training the output is compared to the

target. The difference is measured with the cross entropy loss. Based on the loss

a small correction is applied to the matrices. As with any local optimization it

takes a lot of iterations with different inputs before the system converges to a

with near certainty suboptimal solution. What local optimizer lack in accuracy

they make up for in ease of use and comparatively minuscule resource require-

ments. Once the training has converged we can compute the word embedding

simply by multiplying the embedding matrix with the one-hot encoding of a

desired word. Interestingly if we remove the hidden layer we essentially end up

with a co-occurance matrix. Though here the neural network would address

the frequency bias for us, as shown in [LG14]. The hidden layer is significantly

smaller than the vocabulary. Thus the network is forced to encode statistical

information and thus also semantic information. The hope is that the network is

able to remove noise and unnecessary information and merge similar contexts.

This is analog to truncating a co-occurance matrix with a kernalized SVD a

process called latent space analysis. In fact [Dom20] showed that any gradient

descent method is approximately equivalent to a kernel machine. While this is

of little practical relevance it does allow us to apply insights from SVD to neural

networks and vice versa.
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Figure 7: Skip-Gram word2vec model. Source [Wen17]

Both word2vec and co-occurance matrices are limited by the vocabulary of their

training corpus. If a word is not present in the corpus our methods simply can

not provide us with a vector. In effect, they function like simple lookup tables,

we can not access unknown entries. This problem is made worse as usually rare

words are trimmed since there are not enough training samples. Most methods

also avoid lemmatization so that the word embeddings actually also contain

grammatical information besides meaning7. Including inflections obviously in-

flates the number of words in the vocabulary. Together inflections and trimming

make out of vocabulary (OOV) occurances in practice quite frequent.

To address the OOV problem newer methods use sub word tokenization. If

we consider a spectrum from splitting input only between words and on the

other side giving every character its own token, then the word2vec model lies

on one end. On the other extreme are character aware convolutional methods

like [Kim+15]. They use a character vector conceptually similar to one-hot

encodings of ASCI characters to make characters accessible for a neural network.

Then they use a Convolutional Neural Network to learn word embeddings from

the separate character tokens. It turns out for most tasks a hybrid approach

like FastText[Boj+16] or word pieces[Wu+16] provide better performance as

demonstrated in the respective papers. Below we can see an example of word

piece tokenization:

7Whether or not grammar is actually distinct from meaning depends on ones interpretation
of meaning. However having grammatical information is obviously beneficial in some cases
necessary to understand a sentence or how a word contributes to a specific sentence.
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The EIRENE system shall enable ...

’The’, ’E’, ’##IR’, ’##EN’, ’##E’, ’system’, ’shall’, ’enable’ ...

As we can see most words were embedded as normal word vectors. However

the unknown word ”EIRENE” is split into a mix of character and two character

tokens. The ## indicate that this token belongs to the same word form of the

previous token. While completely unknown words like ”EIRENE” are unlikely

to receive an embedding that actually captures its meaning, the model does

provide a unique set of vectors for the word. This makes word pieces extremely

useful for text vectorization. It provides a much more compact alternative to

one-hot encoding and as demonstrated solves the out of vocabulary problem. As

such many modern approaches rely on methods like these to vectorize text input.

Even more impressive, if two known words are combined these approaches have

a good chance at correctly splitting them during tokenization. As each part

of the word is known sensible embeddings can be provided for some unknown

combinations and even inflections. Lets imagine a training set that does not

contain the word airspace. A word piece model trained on this dataset can still

provide a reasonable embedding for airspace as long as it has learned embeddings

for both air and space. Even if airspace would have been present word pieces

would have split the word in two tokens. Word pieces also tends to split word

stems increasing the number of training samples for each token. For example

walked, walker, walks would be split to walk ##ed, walk ##er and walk ##s.

3.3 From context to contextual embedding

Even after addressing the OOV problem, all models that have been discussed

so far still have a common flaw. They map a word form to a single point in a

semantic vector space. They create an embedding that is static and only depends

on the target word form. This makes it impossible to express polysemous words,

words with more than one meaning such as bank. In the best case, the vector

represents the meaning of the dominant word sense.

However, most approaches do not even account for the possibility of multiple

word senses. Instead, all contexts regardless of word sense are aggregated when

computing the word vector. As long as the dominant sense makes up a large

majority of all word form occurrences, the embedding remains close to the dom-

inant concept. As the proportion of other senses increases, the vector is pulled

to the mean of the separate senses in the semantic space. The one-to-one map-

ping has the benefit that the results of the embedding process can be stored

in a simple data structure, as noted before acting in effect like a look-up table.

This makes these models very easy to use and they do not require dedicated
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hardware after training. The models that use sub-word tokenization do, how-

ever, come with memory requirements that are unreasonable for most end-user

devices. FastText for example requires about 7 GB.

Conceptually it is quite simple to address the one-to-one mapping problem.

Instead of asking the network what the best embedding for our target word is,

we ask what the best embedding for a word in a given context is. So using

the example from above, we want to create specific embedding for the word

swing given the sentence ”The man who passes the sentence should swing the

sword”. Now we take the neighborhood of ”swing” from our sentence ”sentence

should the sword” and create a vocabulary vector8 for it. If we now multiply

this vector with the context matrix instead of the embedding matrix, Figure 7

green matrix, from a trained word2vec model, we get a vector that specifically

represents ’swing’ for this given context. Granted this contextualized word

embedding is missing the most important piece of information to create a word

embedding, the target word. As such this would be a very poor contextualized

embedding and unlikely to be of practical use. However, it is contextualized and

we can easily verify this by creating an embedding for two separate occurrences

of swing. The distinct neighborhoods will lead to different vectors.

To improve the contextualized embedding, we have to take the target word along

with its neighborhood into account. With the word2vec tasks, neighborhood

and target are always separated between input and output. This means it’s

impossible to create an embedding that takes context and target word into

account, as we would need to fix both input and output when evaluating such

an embedding. For properly contextualized word embeddings, we need a model

with a different training task. A task where the target word can be both in the

input and the output. One such task is Masked Language Modeling (MLM).

Here the network is given a sequence of words from a text but one word/token is

hidden or masked. The network is tasked with finding that hidden word/token.

For example, given ”The man who passes the MASK should swing the sword”

the goal is to predict the token for ”sentence” or possibly multiple tokens if

sentence was split into multiple tokens. So while the network is tasked with

generating the hidden token, it also has to generate tokens for all the other

words in the sequence. If we want to create a contextualized embedding for

”sentence” we now have everything we need on one side of the network. Both our

target word ”sentence” as well as its context had to be vectorized and returned

by the network. Thus unlike word2vec we can now investigate the embedding

matrix with the target token and its context. The natural next question is

how the target and context vectors can be combined. We will address the issue

in subsection 3.5. In practice the issue is most often avoided by forwarding

8The sum of the individual one-hot encodings of the neighborhood words
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a sentence through the whole network and look at the last hidden layers as

contextual vectors. This second approach also needs a training objective that

allows the target word to be in the output. Language models can generate

longer texts by using the output of one prediction as input for the next. Similar

to word2vec the real strength of this task is that almost any text can be used

for training with little preprocessing necessary.

[Kim+15] uses such a language model task to create contextualized embeddings.

Just like before natural language needs to be converted to a vector representation

before it can be processed by a neural network. Instead of using the extremely

sparse one-hot encoding here, they encode the natural language with previous

static embeddings. By treating the word embeddings as an encoding of language

instead of a semantic representation it does not matter that they can not capture

polysemy. Instead, the input is just a compact numerical representation of the

word forms. The model then can create contextualized representations from

the encoded input as described above. [Pet+18] combined the approach with a

bidirectional LSTM model to create one of the most well-known models up to

date ELMO (Embeddings from Language MOdelling). They showed that the

word embeddings learned in the LM task can significantly increase performance

on many downstream tasks such as textual entailment, semantic role labeling,

coreference resolution, or named entity recognition.

3.4 The age of transformers

The traditional neural networks, like word2vec, that just contain a bunch of

neurons that are connected in a layer-wise manner are called Multi Layer Per-

ceptron (MLP). In theory, MLPs are universal function approximators which

means given enough training samples we can solve any problem. Or at least

we can find an approximation to any function. So we can solve any problem

that can be formulated as a mapping from some input to some output and isn’t

random. In the real world, however, there are pesky obstacles such as finite

computational or memory capabilities. This makes it necessary to develop an

alternative neural model that needs fewer training samples. Having fewer pa-

rameters in a model means fewer adjustments need to be made. In turn, less

memory is needed, and since fewer neurons are used it also requires less com-

putational power. Unfortunately just reducing the number of parameters in an

MLP leads to underfitting for any but the most simple problems. For a thorough

overview of traditional deep learning methods, we can recommend [GBC16].

So the real question is how can we get the best results with a reduced set of

parameters. One approach that is particularly popular in computer vision is
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to limit the connections between layers. In MLPs each neuron of a subsequent

layer is connected to every input. Convolutional Neural Network (CNN) reduce

the number of connections by only considering a small area in the input and

summarizing it. As many modern photos have literally millions of pixels, con-

necting every neuron in a hidden layer to every input quickly inflates the number

of connections. Instead of millions of connections, most CNNs use a kernel size

between 5x5 and 11x11. Pooling layers allow different input dimensions to be

reduced to one fixed representation. This is great to deal with variable image

dimensions but makes the model rotation and to some extend translation invari-

ant. This is fine for most vision tasks. If we build a network to classify whether

an image contains cats or not we don’t care where the cat is in our image data.

In language the order of words in a sentence matters. While this may seem to

disqualify CNN for NLP, relying on local information only does give impressive

results in some NLP tasks. And since they so significantly reduce the number of

parameters they are extremely fast. This allows CNNs to explore more complex

model architectures.

The alternative to reducing the number of parameters in the model is to reduce

the input size. A smaller input means fewer values that subsequent layers need

to connect to and ultimately also fewer parameters overall. Instead of consider-

ing a full sentence at once, its tokens are forwarded through the network one at

a time. This should be quite intuitive as humans read in the same manner. We

read one word at a time but retain the knowledge of previous words to actually

understand a sentence. This mechanism of retaining knowledge is achieved by

using part of the output of the network as additional input for the next iteration.

These networks are known as Recurrent Neural Network (RNN). Gated Recur-

rent Units (GRU) and Long Short Term Memory (LSTM) are the most popular

RNN networks for NLP. As the name suggests LSTMs have been designed to

retain information across long sequences. In reality, the finite and often reduced

precision of floating-point operations leads to vanishing gradients9. So while in

theory LSTMs can retain information across a long sequence in practice they

are expensive to train and fail to retain information for more than a few words

in sequence.

In [Vas+17] they introduced the transformer architecture which addresses the

performance concerns of RNNs and the word order problem of CNNs. Trans-

formers are based on the idea of self-attention. MLPs pay attention to all inputs

at any time. Most of these inputs are irrelevant and the computation is wasted.

In CNN we limit the attention of the network to a small region in the input and

ignore the rest. Transformers on the other hand learn themselves what inputs

9The gradients used to update the neural network tend towards zero. This leads to in
practice no updates at all.
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they should pay attention to. As such they have, in theory, infinite support.

In other words, no matter how long the input is, transformers can learn which

parts are related and relevant. The self-attention mechanism can actually learn

to compute a convolution [CLJ19]. As such transformer modules can be seen as

a generalization of CNN. Just like CNNs, they fail to consider the ordering of

the input, as recently proven by [DSS21]. To address this positional information

is encoded directly into the data itself. That allows the network to learn the

positional superposition on top of the actual token embeddings and make use

of them.

Transformer provided a significant leap on almost any NLP task as demon-

strated by the BERT model [Dev+18] that proposes a particular configuration

of transformer encoder modules. BERT is the most used transformer architec-

ture and there are dozens of derivatives. Another well know family of trans-

former architecture is GPT-2 [Rad+18] or GPT-3 [Bro+20] which utilize the

decoder modules of the transformer architecture. Unlike BERT it uses a unidi-

rectional language model. This means it only considers tokens from left to right.

This works great for text generation but limits the applicability to other tasks.

Virtually all improvements in NLP since 2017 have been achieved by models

that use some part of the transformer architecture. And thus began the age of

transformers.

3.5 From words to phrases

The previous sections provide a rough outline of different approaches to gener-

ate semantic embedding for single words. We also discussed that we can create

embeddings for subword tokens. For CCR we need to be able to compare the

meaning of phrases rather than the meaning of words with each other. Ex-

tending tokens to whole phrases is clearly unfeasible. By considering swing the

sword as one token the number of occurrences per token in any text will be

drastically reduced. Further, it would drastically inflate the number of tokens

and would significantly boost out of Vocabulary (OOV) occurrences. There are

many more reasons why this approach is unlikely to perform well. We can not

expand tokens to phrases due to the exploding combinatorics. Instead we need

to combine the embeddings of single word forms to a vector that represents the

whole phrase. The resulting vector is referred to phrase embedding. Similarly

sentence embeddings refer to vectors that represent a whole sentence.

While there are a few works specifically targeted at phrase embedding the lack

of a benchmark dataset makes it difficult to judge their results. Both phrase

and sentence similarity are subtasks of Semantic Textual Similarity (STS). How-
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ever most benchmarks that are meant to evaluate STS performance are sets of

sentence pairs with manually annotated similarity scores. They record the sim-

ilarity in 5 discrete classes from 5 to 1. Sentences with a similarity of 5 have

basically the same meaning. Sentences with a similarity of 1 have no seman-

tic connection. Most models return a similarity metric in the range [0 − 1].

To compare the predicted similarity metric with the similarity score from the

benchmark the correlation between the two is calculated. Many of the bench-

marks have been published as a challenge set by the SemEval conference. In

2017 [Cer+17] they provide a collection of all previous SemEval datasets and

this has become one of the most prevalent benchmarks in semantic similarity.

Still, fundamentally it doesn’t matter if we want to compare phrases or sen-

tences, we still need to somehow aggregate the information from individual

word embeddings. That allows us to make use of the sophisticated networks

that generate high-quality word embeddings for us. We want to use these em-

beddings to compute semantic similarity between the target phrases/sentences.

The most common approach is to add a small neural network to the embedding

layer and train it with the task to compute the similarity. During training10 the

additional network would learn how to aggregate the vectors for us. This would

of course require a training dataset with some kind of similarity labeling. Since

we have to manually create a training set these approaches are supervised. In

fact, the best STS models are supervised methods that require sentence pairs

along with their similarity label for fine-tuning. As described before we do not

provide a training set for the CCR task. Even if we had enough examples for

fine-tuning supervised sentence similarity models it is still not directly applicable

to CCR. Supervised STS methods take two text sequences as input and output

a similarity score. For the CCR we need to compare only a part of a sentence

with a phrase from another sentence. So in order to use the supervised methods

directly, we would need to only input the phrases we want to compare. Thus we

will remove the contextualization that is, as explained in subsection 3.3, often

necessary to correctly disambiguate words. Finally, as these methods have been

trained on full sentences using them to compare phrases that are on average

only 1
4 of the length might further degrade the quality of the similarity score.

Supervised methods might still yield good results on CCR however we can not

fine-tune these methods to our dataset or even domain. Therefore it makes

sense to also consider unsupervised methods as these don’t require labeled data

to be fine-tuned.

So we are left with manually combining token embeddings to a phrase em-

bedding. We take the raw word-embeddings of all words in a phrase from an

10Technically this is refered to as fine-tuning and will be further explained in subsubsec-
tion 5.2.2
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unsupervised model and arithmetically combine them into a single vector that

represents whole phrase. Since we are now using unsupervised models we can

adopt the word embeddings themselves to our domain by training these models

just on requirements. The approach that would retain the most information

would be to concatenate all token vectors of a phrase. This will create phrase

embeddings where the dimension of the embedding vector depends on the num-

ber of tokens in the phrase. This makes it difficult to compare two phrases

as most similarity metrics are only meaningful if both vectors are of the same

length. For example, computing the cosine similarity between two vectors re-

quires that both vectors have the same dimension and that both vectors use a

common basis. Thus to compare phrases we need their embedding to be of fixed

length.

Supervised models extract relevant information from the model

for us. In unsupervised models we have to decide how to extract,

condense and compare information from the model weights.

(3)

We already discussed that we can not use supervised learning methods to com-

bine vectors or learn a similarity function for us. Thus in order to create a

fixed size embedding we need some arithmetic operation to combine the vec-

tors. There are two obvious choices, we can either average the vectors (average-

pooling) or choose the max value for each vector component among all vectors

(max-pooling). To evaluate which operation performs better we also need to

choose a distance measure between the vectors. The most common metric is

the p-norm of the vector difference. Or for p=2 simply known as the euclidean

distance. However, looking at the word embeddings we notice that the norm

of the resulting word vectors is very heterogeneous. This is a direct result of

the training process. Consider the word2vec model. Every new training sample

is going to slightly pull the input word embedding towards the target word,

subsection 3.2. So by feeding {cat, cute} to the word2vec model the embedding

of target word cat is going to be adjusted towards the vector of cute. A more

ambiguous word such as the is likely to be affected by opposing adjustments

that partially cancel each other out. Thus the magnitude of the cat vector is

larger than that of the. This could of course be easily addressed by normalizing

word vectors before comparison. The actual downside of the euclidean distance,

or any other p-norm, is that it considers any dimension where the two vectors

are different. In a sparse high dimensional space where most features are close

to zero this means that any time only one of these vectors differs from zero it

will affect the distance measure. The cosine similarity uses multiplication rather

than the difference and as such ignores a dimension if either vector component

is close to zero. This means cosine similarity focuses on overlapping features
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instead of absolute differences. To some extend we can actually consider cosine

similarity as the correlation between vectors. This is especially useful for high

dimensional sparse spaces such as our word embeddings. Thus, the consensus

in the NLP community is to use the cosine in between the vectors. Using cosine

as the metric average-pooling outperforms max-pooling for semantic similarity

[Dev+18] and can be also seen in the results subsubsection 5.2.6. In fact, the

average word2vec and Glove embeddings [PSM14] still provide a competitive

baseline for the STS benchmarks [Cer+17]. Despite encouraging results there

is no theoretical justification why average-pooling in combination with cosine

similarity should work on embeddings from word2vec or any other model. To

summarize:

Unsupervised models can easily be adopted to a specific domain

whereas supervised models require substantial manual effort to

adopt to a domain.

(4)

In order to combine word vectors of a phrase into a uniformly

sized vector we can use pooling operations such as average- or

max-pooling.

(5)

[Zhe+19] however provided a theoretical justification for an alternative met-

ric. So far we have considered the words to be embedded into a conceptually

euclidian meaning space. [Zhe+19] propose to consider vector embeddings as

the membership function of a fuzzy set instead. Fuzzy set theory is a well-

established extension to classical set theory. Instead of assigning elements as

either in a set or not, fuzzy sets allow for degrees of membership. Fuzzy sets

are made up of two parts. A universe that contains all possible set elements

V = {w1, w2, . . . , wN}. And a membership function that specifies the degree

of membership for every element in the universe µ : V −→ L. Traditionally

membership degree is scaled to be in L = [0, 1]. To represent the meaning of

a word with a fuzzy set we can use the vocabulary as the universe and the

relatedness to other words of the universe as the membership functions. For

example the fuzzy set for cat should contain a whole lot of cute, some degree of

animal and pet but not a lot of airplane. Measuring the co-occurrence of words

in large text corpi is one kind of relatedness measure and thus they can also be

interpreted as the membership function of a fuzzy set. The authors also show

that we can use word embeddings as membership functions. We have already

discussed that word embeddings are analog to SVD reduced co-occurrence vec-

tors and as such, this is consistent with previous findings. If we consider word

embeddings as part of fuzzy sets we can also use set similarity measures on

word embeddings. They proposed to use the Jaccard Index and achieve signif-
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icantly better performance over the conventional cosine similarity. In order to

use set similarity, we have to ensure that we only apply valid set operations to

our membership functions (word embeddings). Unfortunately, average-pooling

is not a set operation and as such we can not apply a set similarity and expect

reasonable results. However, the union of fuzzy sets is the max-pooling of the

membership functions A ∪ B = (V,max(µ, ν)). As such the authors promote

the use of max-pooling and show that if we use max-pooling we can apply set

similarity measurements. They further demonstrate that set similarity (Dyna-

Max) outperforms cosine similarity on all semantic similarity benchmark tasks,

subsection 3.5, for all prominent static word embeddings (word2vec, GloVe,

fastText). It even demonstrates that set similarity of simple static word em-

beddings can compete with much more complex and specialized solutions such

as universal sentence encoder (USE) [Cer+18b]. This gives us the following

options:

Unsupervised models provide word vectors that can be com-

pared with vector similarity methods such as cosine, Jaccard or

DynaMax.

(6)

Set methods require set operations to combine word vectors to-

gether. Max pooling is a valid set operation.
(7)
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3.6 Related works in Requirements engineering

The removal of defects in the specification phase of a project is significantly

cheaper than in any subsequent stage. Therefore it is natural to explore a sys-

tem that prevents defects or detect defects and allows corrections. Prevention

is attempted by specifying all requirements in a formal grammar that either

doesn’t allow certain defects to be expressed or can be automatically evaluated.

While formal grammar can be constructed such that some defects can not be

expressed, their complexity can be a serious barrier. Similar to program code it

not only requires a trained expert to write formal requirements but also to read

and understand them. As this can prevent stakeholders from understanding the

requirements of their own projects, unsurprisingly, a large majority of require-

ment specifications use either natural language or a semi-formal language that

superimposes sentence templates on natural language. As such systems that

can detect requirement defects in natural language are necessary. For an ex-

tensive discussion on types of ambiguity in requirement specifications, we refer

the reader to [Kam+03]. In the survey, they also discuss methods of addressing

lexical and syntactic ambiguities. However, it was difficult to address seman-

tic ambiguity at the time, because in general NLP had not advanced enough.

Further, they do not consider coreference detection or similar tasks such as

duplicate detection. In fact, a recent mapping survey [Zha+20] showed that

the field of NLP4RE is still a niche field of research with about 23 studies on

the topic per year over the past 20 years. However, the field enjoys explosive

growth probably fueled by the opportunities recent NLP advances offer. The

survey only identified 8 papers using word2vec, 2 papers using Glove and none

utilized a transformer. Since the release of the survey, there have been a few

papers that use a transformer for requirement classification such as [Hey+20;

You+20]. Other surveys such as [SJ15; AA21] also show that a large part of

published papers are concerned with requirement classification. We found two

domain-specific methods that are related to CCR and make use of recent NLP

techniques. We will present both in the following sections.

3.6.1 DeepCoref

[Wan+20] aim to resolve coreferences between previously identified multi-word

form entities with their DeepCoref model. Unlike Component Coreference Res-

olution (CCR), subsection 2.6, they do consider trivial coreferences that have

identical word forms as coreferences. As such achieving high accuracy on their

dataset is much easier. Further, their method requires that all occurrences of

components/entities have already been identified and are available as input
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for the model. Thus the input contains a requirement pair but also a single

phrase in each requirement that will be compared. The model then only needs

to consider these two phrases rather than identifying the correct phrase as in

CCR. They consider the context of a phrase to be the requirement that contains

the phrase. Each requirement pair is fed through a BERT model, left side of

the inner box Figure 8 labelled as context11, to obtain a vector representation

of each requirement. They extract the vector representation for the each of the

two input requirements from the CLS token. The CLS token is a special token

in the BERT architecture and can be used for sentence level embedding. They

do not motivate their decision to use the CLS token despite plenty of evidence

that average pooling outperforms the CLS vector as semantic representation,

[RG19; Cho+21].

The phrases here labelled entities themselves get forwarded through a word2vec

model as depicted in Figure 8 right side of the box. The goal is that the vec-

tor from the BERT model provides semantic information and the vector from

the word2vec model can focus more on syntactic features. Then the a simple

fully connected layer extracts the correct informations from these four vectors to

perform a binary classification into coreferent or not. Since we have to provide

phrase annotations to every requirement pair we also have to manually anno-

tate requirement pairs that do not contain coreferences at all. Since a word2vec

model rather than just the embedding matrix, subsection 3.2, is used they are

actually able to fine-tune both BERT and word2vec with the classification task.

To reduce training time and more importantly the number of required training

samples they initialize both models with publicly available weights. They obtain

1853 samples with roughly halve containing coreferences. They achieve above

90% precision and recall. However, since they consider trivial coreferences even

a simple Levenshtein distance achieves above 80% precision on their dataset.

This makes it even more difficult to compare their results.

Their DeepCoref achieves seemingly impressive results but their implementation

relies on pre annotated inputs. This is a luxury most requirement specifications

can not provide. Thus in order to use this approach, it is necessary to manually

extract high-quality entities first even after training is complete. As they use

a supervised approach it also requires the training dataset to be further anno-

tated with coreference flag for the already provided phrase pair. The manual

construction of such a dataset is very labor-intensive. Their presented approach

requires us to forward every requirement pair through the entire model to com-

pare them. As such, the required model inference scale quadratically with the

number of requirements to be tested. Unfortunately [Wan+20] could not publish

11Technically they use a window of words around the phrase including the phrase itself as
the context rather than the whole requirement but conceptually it makes no difference.
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Figure 8: DeepCoref model architecture. The context refers to a n-window
around the target phrase including the target phrase itself. So context1 refers
to a part around the target word in the first requirement. Context2 then refers
to a part of the second requirement of a pair. Entity 1 and 2 are manually
identified component phrases that are provided to the model as input. Graphic
from [Wan+20]

their dataset. To summarize our findings:

The number of model inferences scales quadratically with the

number of requirements in supervised CCR models.
(8)

Manually annotated inputs will require the same number of

manual operations as model inference and should therefore be

avoided.

(9)

3.6.2 Puber and Fiber

[Das+21] explore similarity and duplicate detection in requirement engineering.

They experiment with two versions of the BERT model. The first version they

train from random initialization on the entire PURE dataset. They refer to this

version as Puber12. To generate sentence embeddings they extract the vector

of the BERT-specific CLS token.

Their second BERT variation is also trained on PURE but they initialize the

weights with a public pre-trained BERT model. They adopt the the BERT

12Puber: PURE and Bert
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model in an unsupervised manner. For now it is sufficient to note that un-

supervised domain adoption does not require labelled data for training. They

refer to the domain adoption as non-task-specific fine-training and named this

second approach Fiber13. As with any unsupervised approach, Finding 3, they

need to extract and compare information manually. Instead of using the CLS

token as with Puber, they test average and max pooling strategy to extract a

sentence emebedding with Fiber. This is unfortunate as we can not verify that

the performance difference between Puber and Fiber is due to domain adoption

or pooling. To compare two sentences they use the cosine similarity.

To evaluate their approach they build a test set made up of 800 sentence pairs

that are each labeled as either similar or dissimilar. They extracted the re-

quirement pairs from the PURE [FSG18] dataset analog to STS datasets. Fiber

showed significant performance lead to Puber that have not been fine-tuned

to the PURE dataset. This is Unsurprising as the small Pure dataset with

just under 40 000 requirements is not enough to adequately train BERT from

scratch in case of Puber. More interesting for us is that they compare their

two models to publically availible models. Some of these additional model,

such as RoBerta[Liu+19], are extensions to BERT that generally outperform

the base version of BERT used in both Puber and Fiber. Another model Uni-

versal Sentence Encoder (USE)[Cer+18a] in their comparison is a supervised

approach that has been trained on general sentence similarity datasets. In the

general setting both of these models outperform BERT on sentence similarity

tasks. Despite these advantages Fiber outperformed both models significantly.

We take these results as a indication that unsupervised domain is more impor-

tant than a more sophisticated model or supervised approach without domain

adoption. Thus our main takeaway from this approach is:

Unsupervised domain adoption can outperform generalized su-

pervised models.
(10)

13Fiber: Fine-training and Bert
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4 Dataset Construction

In order to evaluate different models on the CCR task, we need to be able to

measure the performance of different models on the task. As there is no public

dataset available we created our own. To create a test set for CCR we considered

three different approaches:

(1) Manually identification of coreferent phrases in existing requirement

datasets such as PURE [FSG18]. However, since the effort of identifying corefer-

ences scales quadratically with the number of requirements, this is unfeasible to

manually perform on any substantial requirement set. To illustrate this further

consider a requirement set with 400 requirements. We need to compare every

unique noun phrase with each other. While most requirements have multiple

noun phrases some might be reoccurring in the set which reduces the number

of necessary comparisons. If we assume that each requirement has one noun

phrase that actually needs to be compared we need to perform 160 000 manual

comparisons. Further, it seems that the PURE datasets have been analyzed

and corrected prior to release. It thus might actually only contain a handful of

coreferences. However, we can only know for sure after the manual identification

step. The large number of manual comparisons required also give rise to human

error which in turn invalidates the dataset as a benchmark. Using a particu-

lar semantic similarity method to prune the necessary comparison introduces

a strong bias in favor of that particular method. Even conservative pruning is

likely to also remove some actual coreferent pairs. This means that we do not

know how many coreferences are actually present in the final dataset. Thus we

can not compute common benchmark metrics such as precision or recall.

(2) Construct CCR dataset from existing dataset by manually writing

additional requirements that contain coreferences to the source dataset. We pick

a random requirement from the source dataset and then select a noun phrase

from the requirement. For that noun phrase we come up with a coreferent and

write a new requirement that contains the coreferent. During the construction

of the second requirement, we also ensure that no other accidental coreferences

to the first requirement exists. This will give us a requirement pair that contains

one and only one coreference. We also construct requirement pairs that specifi-

cally do not contain coreferences. This allows us to treat part of the evaluation

as a binary classification. The other part of the evaluation is the identification

of the coreferent phrases.

The construction of additional requirements and especially the deliberate search
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for coreferences is different from the natural occurrence of coreferences. As such

it is reasonable to expect that this approach will also lead to some bias.

(3) Create an entirely new dataset that is authored by several people

to naturally give rise to coreferences. The participants would be given a brief

description of a fictional project and then be tasked to write down requirements

for it. Unlike approach (1) we expect the different authors to introduce coref-

erences at a higher rate as no terminology has been established. Identical to

(1) the effort of detecting coreferences after the requirement acquisition is not

feasible for this thesis. Even if we assume higher coreference rates and only

collect half as many requirements as in (1) we still need to evaluate at least

40 000 noun phrases. Like (1) this would alleviate the bias compared to (2) as

coreferences are not actively searched but occur naturally.

Due to the effort required for (1) and (3) we choose approach (2) to construct

the CCR dataset. Further, we believe that (2) offers more robust evaluation

metrics. To mitigate the bias we identified for (2) we focus on exchanging noun

phrases by shifting formulation to the perspective of a different stakeholder.

If a noun phrase is very technical we try to find a more casual coreference.

We found the following perspectives useful: technical programmer, casual user,

business-oriented accountant. Using the perspective shift as a guideline intro-

duces another bias but it should give us coreferences that are relevant to RE.

[DSL18] showed that different stakeholder perspectives are in fact one source of

coreferences. But since in our case one author merely impersonates the different

stakeholders the results are likely still to some extent different to natural coref-

erences. Creating requirement pairs is also analog to the dominant semantic

similarity benchmark see subsection 3.5 that defines sentence pairs.

4.1 Guidelines during dataset construction

For the construction of the dataset, we choose the Clarus project which was

published as part of the PURE [Fan+18] requirement collection. The Clarus

project is specified in a 99 page long document which devotes the majority of its

content to defining 273 actual requirements. The remaining content gives a more

general idea of the project and scope. Interesting for us is that they also defined

a glossary that defines many of the terms that we constructed coreferences for.

As such we also extracted the glossary separately as well as the free text from

the pdf. In total, we provide three files as part of our dataset.

• clarus req pairs.csv We use the $ as a row separator as this symbol is
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not used in the original pdf. A short sample of the content is given in

Table 1 and the file contains five columns:

– req1 Contains all 273 original clarus requirements

– req2 Contains the constructed requirements. As we have not con-

structed a partner requirement for every req1 some rows are empty.

– type Is set to CR if requirement pair contains a coreference; N if the

pair contains no coreference; or empty if req2 is not set

– phrase1 contains the phrase from req1 that was reformulated for

req2. Only set for requirement pairs of type CR.

– phrase2 contains the reformulated phrase that is coreferent with

phrase1. Only set for requirement pairs of type CR.

• clarus free text.txt which contains the minimally processed text from

the pdf including requirements and glossar.

• clarus requirements.txt which contains the all requirements from the

Clarus project as well as the constructed requirements.

• pure requirements.txt which contains the all requirements from the

PURE requirements collection.

For the construction of the dataset, we split the 273 requirements among 6

participants. This likely gives a greater variety of coreferences as they are con-

structed by different authors. To ensure that the participants are familiar with

the Clarus project they were given a 5-minute presentation. Each participant

then received a concise summary of the Clarus project along with guidelines for

the coreference construction in written form. The complete instructions can be

found in Appendix B.

During the construction, we focused on creating coreferences that are plausible

within the Clarus project. We also limit the number of coreferences to one per

pair. Some components are used repeatedly throughout the project. Once we

can not come up with new unique coreferences we skip requirements that do

not contain any other components. If we would allow some coreference pairs to

occur more frequently than others our model might be biased towards that pair.

By not repeating coreference pairs, we prevent one source of evaluation bias.

The participants have also been asked to generate entirely new requirements

rather than just exchanging a phrase in the original requirement. Due to the

rigid structure of requirements many requirements pairs have a strong overlap

despite these efforts. However we

38



Req1 Req2 Label Phrase1 Phrase2

The Clarus system
shall manage envi-
ronmental data and
metadata according
to the Clarus data
sharing agreements.

The Clarus system
shall show users the
data exchange condi-
tions

CR data
sharing
agree-
ment

data ex-
change
condi-
tions

The Clarus system
shall implement
quality checking
processes as soon
as data become
available.

The Clarus system
shall implement a
manual overwrite op-
tion for historical lo-
cation data.

N

Table 1: This is a small sample from the CCR dataset. The first column req1
(Original requirement) consists of the unaltered requirements from the public
Clarus project [Fan+18]. The second column, req2, contains the requirements
that have been manually constructed by our team. Each sentence pair is labeled
to (CR) contain a coreference or (N) not to contain a coreference. The remaining
two columns record the coreferent phrases for all sentence pairs labeled as CR.

Out of the 273 requirements we constructed a second requirement for 205 of the

original requirements. We then reviewed the requirement pairs and removed

any that violated the conditions set above. This left us with 152 requirement

pairs out of which 72 contain a coreference and 80 do not. The 72 requirement

pairs contain 144 coreferent phrases.

4.2 Evaluation

We want to check if the model picked the correct phrase in a sentence. In other

words, we want to compare the predicted coreference pair from the model with

the coreference pair recorded in the dataset. This presents a challenge that

makes it difficult to apply conventional evaluation metrics. We want the com-

parison to be lenient towards predicted phrases that are a bit longer or shorter

than the target phrase. Consider for example the second phrase data exchange

conditions from Table 1. If the model chooses a slightly longer phrase such as

the data exchange conditions we should still consider it a correct match. This

disqualifies direct and fuzzy string comparisons such as traditional Levenshtein

similarity [Lev66] or more modern methods like Mongue-Elkan [Jim+09a]. This

39



further prevents us from considering the evaluation as a multi-label classification

problem and using cross-entropy. Instead, we compare character index range of

the prediction with the character index range of the target phrase. We check for

a overlap between predicted and goal phrase. We are aware that this method

can generate false positives if the predicted phrase captures most or even the

whole input sentence. This can be mitigated to some extend by disqualifying

predicted phrases also based on their length relative to the target phrase and

complete sentence. However in practice we have found this approach to work

well since our phrase candidates do not span over the entire requirement.
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5 Component Coreference Resolution Pipeline

We originally defined the CCR task in subsection 2.6. We will now describe

our proposed pipeline resolve component coreference. As a reminder we take as

input a sentences pair and output a coreference pair if the sentence pair contains

any or none if they do not:

Input: Sentence pair

Output:

{
Coreferent pair if Input contains coreference

Empty else

We propose a simple end-to-end CCR pipeline that works with any Vector Space

Model (VSM), Figure 9. By end-to-end we refer to the fact that our model

does not require any inputs besides the sentences themselves. As we work on

project requirements we will refer to the inputs as requirements rather than

as sentences. The output will provide us with the phrase pair from the first

and second requirement that is coreferent. Our pipeline will provide a single

coreferent pair per input sentence. Unless the input sentences do not have any

coreferent phrases the system should return no phrase pair. The first step in the

pipeline is noun chunking which performs the coreference candidate selection.

In other words, we select phrases that could potentially contain coreferences. As

established in Finding 1 any terminology, independent of domain, makes heavy

use of nouns. We use this insight to create grammatical patterns which ensure

that each candidate phrase contains a noun, subsection 5.1. In the next step,

we compute a vector representation of each phrase using a VSM subsection 5.2.

One challenge here is that some Vector Space Models (VSMs) offers multiple

possible vector embeddings with no clear evidence of which one is superior.

This means we need to determine which embedding type is best suited for our

CCR application. All considered VSM perform the vector embedding on token

level. The number of tokens and by extension the number of vectors in a phrase

embedding thus varies with the length of the phrase. However, to compare two

phrase embeddings, the dimensionality of the vectors must be the same. This is

achieved by a pooling operation that summarizes the different token embeddings

into a single phrase embedding. Finally, we apply a vector metric to the pooled

vectors that represent our phrases.

All phrases from two requirements will be compared in a pair-wise manner. This

will result in a matrix of similarity scores. The columns represent the candidate

phrases from the first sentence and the rows the candidate phrases from the

other sentence. In the example Figure 9, collected dataset and data samples

are the most similar phrases with a score of 0.9. However, since most sentence
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The system must encrypt
all collected dataset

before storage.

Noun chunking ["The system", "collected
dataset", "storage"]

[ [[0.1,...],[0.2,...]],
[[-0.3,...],[0.2,....]],

[[0.7,...]]]

Vector embedding

[ [0.1,0.5,...],
[-0.3,0.2,...],

[0.7,...]]

Vector pooling

The administrators shall
be able to customize the
storage location of data

samples.

Noun chunking
["The administrators",

"storage location", "data
samples"]

[ [[0.4,...],[0.2,...]],
[[-0.1,...],[0.7,....]],

[[0.2,...]]]

Vector embedding

[ [0.4,0.2,...],
[-0.5,0.1,...],

[0.2,...]]

Vector pooling

0.2 0.3 0.32

0.32 0.4 0.6

0.42 0.8 0.7

Similarity
measure

Figure 9: Our proposed end-to-end CCR pipeline. Each sentence is separately
forwarded through until we obtain their phrase embeddings. These can then be
compared to the phrases of another requirement.

pairs do not contain coreferences we can not just return the highest score in the

matrix as a coreference. Instead, we need to define a threshold value for the

similarity score. If none of the phrase pairs of two sentences have a similarity

score above the threshold then we will consider the sentence pair as coreference

free. If the score is above the threshold we can not only classify the sentence

pair as coreference containing but also report the exact phrase pair. Choosing

the best threshold depends on the model used but also on the final use case

for CCR. Ideally one would like to achieve both high precision as well as high

recall. In practice there is often a trade-off. A low threshold will result in a

high recall but lower precision and a higher threshold in a high precision but

lower recall. Thus if we have two models that have the same or very similar

maximal recall/precision/F1 score we prefer the model that allows us to make

this trade-off. A model where threshold vs precision is correlated.

5.1 Noun chunking and candidate selection

The goal of the candidate selection is to pick phrases from an input sentence that

could be a project component. As seen in The goal of the candidate selection is
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to pick phrases from an input sentence that could be a project component. As

seen in subsubsection 2.6.1 we expect our project component terms to follow the

same grammatical patterns as terms in established fields such as mathematics.

As noted in Finding 1[page 15] we have noted that a vast majority (92.5%-99%)

of these terms contain at least one noun. Thus we use noun chunking for the

candidate selection. A noun chunk is a noun along with the surrounding words

that further describe or define that noun. For example autonomous cars has

cars as its root noun and then autonomous is referring to the root noun and

should therefore be captured as part of the noun chunk. In order to select

noun chunks we need to (1) have reliable grammatical annotation algorithms

and (2) identify a grammatical pattern that captures the noun chunks we are

interested in. Fortunately, for (1) we can rely on spacy14, a standard industry

framework for Natural Language Processing (NLP), to provide us with high-

quality grammatical annotation. Spacy assigns each token, here each word,

in a sentence a Part of Speech (POS) tag. Note that the tokenization during

the POS tagging is completely independent of the tokenization performed by

the Vector Space Model (VSM). While the tokenization of POS tagging assigns

every word a separate token this is not the case for most VSM. The POS tags

include nouns(N), adverbs(A), verb(V) or punctuation(P) for each word. A

full list of all available tags can be found here15. To make pattern matching

easier we convert a sentence into a list of abbreviated POS tags, as sketched in

Listing 1 and applied in Listing 3 .

1 de f m a p s en t e nc e t o p o s s t r i n g ( s en t ence s ) :

2 mapping=””

3 f o r token in sentence :

4 i f token . pos i s Punctuation and token i s ”−” :

5 mapping . append (B)

6 e l i f token . pos i s Verb and token . s u f f i x i s ” ing ” :

7 mapping . append (D)

8 e l i f token i s ”and | f o r ” :

9 mapping . append ( J )

10 e l i f token . pos i s Noun :

11 mapping . append (N)

12 e l i f token . pos i s Adjec t ive :

13 mapping . append (A)

14 e l i f token . pos i s Verb :

15 mapping . append (V)

16 e l s e :

17 mapping . append (X)

18 r e turn mapping

14https://spacy.io/
15https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
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Listing 1: Our approach of mapping and grouping POS tags to a simple string.

Each character in the string represents the POS tag category of one token of

the input sentence. The POS tags are calculated using spacy.

We noticed that some of the coreference entries in the dataset require infor-

mation beyond usual POS tags. For example the phrase environment-related

measurement data contains a punctuation ”-” which will be considered its own

token with the POS tag for punctuation. We want candidates to include punc-

tuation’s that bind words together but not punctuation’s that separate words

from each other such as ”.” We address this with an extra rule in Listing 1[line

4-5]. Similarly, we address verbs that are used to further describe a noun in

lines 6-7.

1

2 >>>sentence=”The Clarus system s h a l l implement

3 q u a l i t y check ing p r o c e s s e s as soon

4 as data become a v a i l a b l e . ”

5 >>>pr in t ( m a p s en t e nc e t o p o s s t r i n g ( sentence ) )

6 NNNXVNNNXXPNVAX

Listing 2: We can take a requirement and map it to its pos tag string.

We can then use traditional regular expressions to detect grammatical patterns.

We defined the first pattern to match basic noun phrases, ??[line 2]. This ex-

pression finds phrases with a root noun at the end and a number of possible POS

tag combinations before that. The second pattern captures longer phrases that

are joint together with an and such as maintenance and construction vehicles.

1 pos=ma p s en t e nc e t o p o s s t r i n g ( s en t ence s )

2 short matches=pos . regex ( r ” (D|A |NPP? |N | (P?B. ) |NPX) ∗N” , f i n d a l l=True )

3 long matches=pos . regex ( r ” (NP |V |A) ?(NJ)+N+” , f i n d a l l=True )

Listing 3: We can take a requirement and map it to its pos tag string.

The matches from both regex queries then form the set of candidate coreference

terms.

5.2 Vector embeddings and pooling

We already identified phrase candidates in the previous step, subsection 5.1.

Now we want to map these phrases to a semantic vector space. For this map-

ping, a number of neural networks have been proposed and we presented the
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general ideas in section 3. We will treat their exact inner workings and train-

ing procedures as a black box for this thesis. However, we will look at neural

network structures that is relevant for this thesis. In the following, we will

discuss which choices need to be made to extract a vector representation from

a multi-layer network such as BERT[Dev+18]. We will consider each of these

choices as a parameter for a model configuration. We will test all sensible

permutations of model configurations on our dataset (section 4. A summary of

all parameters along with the values we tested for each parameter can be found

in subsubsection 5.2.6.

5.2.1 Models

We choose three different vector embedding methods to test on our CCR. First,

we choose a shallow model with a single hidden layer that is akin to the word2vec

model, subsection 3.2. Despite numerous proposed extensions the traditional

word2vec model performs surprisingly well on semantic similarity benchmarks

according to [PSP18]. However, most requirements in our test set contain

domain-specific terms that are not present in the texts during the pretraining

phase of the public model, see Out-of-Vocabulary in subsection 3.2. Training

word2vec on our requirement sets would introduce the missing words to the

word2vec vocabulary, however, we believe that the number of occurrences of

these terms is too low to learn an accurate word embedding. Instead, we choose

a model that can handle unknown words. We decided to test the FastText

embedding, Figure 3.2 , due to its strong semantic performance among single

layer unsupervised approaches, [PSP18].

As explained in subsection 3.4 the transformer architecture was a major break-

through in natural language processing. This architecture was popularized by

the BERT implementation that proposed the masked language modeling to train

a stacked transformer architecture in an unsupervised manner. At the time of

publication, the model managed to establish new state-of-the-art results in a

number of benchmarks. Most interesting for us, it also set a new record in

the STS (semantic similarity, subsection 3.5) benchmark [Cer+17] with a re-

spectable 5% gap to the next runner up. To the best of our knowledge, any

model that managed to improve on BERTs result is based on the same trans-

former architecture as BERT. Many not only use the same general architecture

but even inherit the transformer layout and with it the bidirectional nature

of BERT. One such model is the MP-NET[Son+20] developed and trained by

Microsoft. They improved a bias in the random sampling of the Masked Lan-

guage Modeling (MLM) and it is at the time of writing the best model on the

45



semantic similarity benchmark16. As such we choose BERT as our second and

MP-NET as the third model to test.

5.2.2 Training dataset

In order to adapt the embedding models to our domain, we fine-train each

model. We will give a rough idea of fine-tuning in contrast to fine-training

later in subsubsection 5.2.3. Fine-tuning is usually performed directly on the

task we are trying to solve. Since we do not have enough data to set up a

supervised fine-tuning task we need a proxy task that we can use for fine-tuning.

We choose to use the same unsupervised task that the public pre-training was

performed with. For clarity we refer to the case where we adopt the model

with the same task as used during pre-training as fine-training rather than fine-

tuning from here on as proposed by [Das+21]. For fine-training we start with

a publicly available model and then train it with our dataset. By fine-training,

only on our datasets, we do introduce a bias to the training procedure. This

bias is intentional and represents the adoption to our domain. We will only

investigate if our models can benefit from this kind of fine-training and not

concern ourselves with generalisation and transfer learning.

We tested three different subsets of the PURE requirement dataset collection as

training set for this domain adoption. Note that our test set is also based on one

of the projects in this PURE collection, the Clarus project. Our first training set

will contain the requirements extracted from the same Clarus project and the

requirements that we manually constructed for the test set. This will probably

set off alarm sirens in the reader’s head for using the same data for training and

testing. However, in this instance, we actually can use the test set requirements

also for training. We are training only on a proxy task and we are not using the

coreference information from the test set. Thus, we are not actually providing

any of the CCR specific values to the system. In other words, we are only using

the input of the CCR task for training. This training set is the most task-specific

as it contains the same requirements we will use for testing and nothing more.

As such it is also the smallest set and will be referred to as CLarus Requirements

(CLR). Next, we extend this dataset by also including the raw text that is part

of the Clarus project specification document. This provides context information

of the project that is not available in the requirements themselves. As such this

allows us to investigate if any of these models can make use of this additional

information. Perhaps even more interesting this dataset is essentially a pdf to

text dump with minimal processing. If this performs comparably to the other

16https://www.sbert.net/docs/pretrained_models.html

46

https://www.sbert.net/docs/pretrained_models.html


sets it allows us to fine-train our model on any requirement specification without

the need for labor-intensive requirement extraction. We refer to this subset

as Clarus free-text(CLF). Finally, the PURE requirements (PR) training set

consists of the requirements from all projects in PURE collection but does not

include any specification texts as in CLF. This will allow us to see if additional

requirement samples lead to better understanding in form of precision.

We will not change the default training parameters of each model. We believe

the training parameters have been sufficiently explored by transformer publi-

cations and the huggingface17 community to provide a solid parameter set for

most use cases.

5.2.3 Vector pooling

Now we have three different models and even training data to fine-train them.

In subsection 3.2, we have seen how to extract token embeddings from models

with a single hidden layer. We essentially used the weights from the one hid-

den layer as the token embedding. Both BERT and MP-NET use 12 stacked

transformer layer and are not designed to directly provide a vector embedding.

Rather they are deep neural networks that have been trained on basically a fill

in the blank task, more formally know as Masked Language Modeling (MLM),

subsection 3.3. These networks are given billions of sentences with a few to-

kens randomly masked/removed. The networks then need to fill these gaps by

predicting a token that fits in the gap. In order to predict the correct word/to-

kens for a gap these models must learn both syntactic and semantic information

from the training sentences. Thus the information we want in our word embed-

dings must be present in the weights of the hidden layers. The question is how

to best extract that information. Traditionally one does not need to extract

them at all. Instead the trained hidden layers are used as a base and then a

small neural network according to the desired downstream task is added. In

our case we could add a network with a single output which would predict if

two input phrases are coreferent, this is analog to the models described in sub-

subsection 3.6.1. This would train the model in a supervised manner to pass

relevant information down through all layers to the added downstream specific

network. As such the manual extraction of word vectors is eliminated. This

is referred to as fine-tuning as the weights of the original model are tuned to

best serve the new task. While fine-tuning requires significantly fewer training

samples than training a network from scratch it would probably still require at

least one thousand training samples to achieve acceptable results. This type of

17Hugging face is a project that aims to make all kind of transformer model easy to use,
compare and share.
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fine-tuning would also learn how to compare two phrases for us, eliminating the

need for a similarity metric. If we had even more samples we could also offload

the candidate selection step to the neural network. Besides the fact that we

do not have enough data for these supervised methods, the bigger issue would

likely be performance. While supervised models compare phrases for us, it also

means that the only way to compare two phrases is to forward them through

these models. As noted in Finding 8[page 34] this lets model inferences grow

quadratically with number of inputs. In our proposed pipeline, we only need to

forward each phrase once through the network to get its vector representation.

We can then do the comparisons between phrases by only using the vectors. As

a result in our pipeline the number of network inferences grows linearly with

the number of phrases instead quadratically.

Layer Pooling

This still leaves the question: If we do not let a downstream task decide what is

relevant, how do we extract meaningful vectors from the twelve hidden layers?

We could decide to just pick one layer to use for our token embedding. So for

example we could always take the weights of the last layer and use that like

the vector embedding from a model with just one layer. Instead of choosing

the output of a single layer we can also combine the output of multiple layers,

Figure 10. This is in principle the same process as for the phrase pooling in

subsection 3.5. However, unlike the length of a phrase the number of layers

we use will remain constant independent of the input. This allows us to also

concatenate the layer vectors into one very large vector as the resulting vector

will be the same size for every input. This would not work for phrase pooling as

it would result in variable vector sizes depending on the number of tokens in a

phrase. [Dev+18] found that layers closer to the input contain more syntactical

information and the layers closer to the output contain more semantical and

conceptual information. We will therefore focus our testing on the last layers.

We will test three different layer selections choosing the: 1) last, 2) last four or

3) all layers. For Phrase pooling we will test 1) mean and 2) max pooling.

Besides phrase and layer pooling there is a third pooling operation we need to

consider, subword token pooling. In order to avoid out of vocabulary words

BERT and its derivatives split words into multiple tokens. As such a single word

may be represented by multiple token. Subword pooling decides how or if the

different tokens of a word should be combined before layer pooling, Figure 10.

[ÁKK21] showed that the choice of subword pooling is not only relevant but

also task dependent. For subword pooling we test the some of pooling strategies

presented in [ÁKK21] namely to select the 1) first-token, 2) last-token, 3)
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Figure 10: Different pooling stages for transformer architecture.

mean of tokens (mean-pooling) and finally add 4) max pooling. As noted in

Finding 7[page 31] in order to apply set-similarities max-pooling is a good match

for the set-similarity metric, subsubsection 5.2.4, we want to test.

In summary phrase pooling is necessary to get uniformly sized phrase vectors.

The other two pooling stages (Subword and Layer) allow us to select which part

of the network we want to use. This choice depends on the underlining task

and optimization goals. These three pooling stages allow us to extract a phrase

embedding from any deep language model.

Though using average layer pooling seems to be the most popular approach by

far. Even the original BERT paper mentions that layer concatenation outper-

forms average pooling on average. Then [Zhe+19] advocates for max pooling

instead by also introducing a new vector comparison that only works on max

pooled vectors. Even more recently [ÁKK21] introduced subword pooling and

showed that it makes a significant difference. Further they showed that the best

subword pooling strategy for one task (e.g. Morphological task) can actually

perform worse than no subword pooling in another task (e.g. POS tagging). We

think it is beneficial to this project to test the different parameters described

above.
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5.2.4 Vector similarity

We are left with one vector representation for every coreference candidate. All

vectors are of equal size. As noted in Finding 6[page 31] we can compare

these vectors with each other to gai some word-similarity measure. As ex-

plained in subsection 3.5 cosine similarity is generally preferred over euclidean

distance. Further, we will also test the two set similarities Jaccard index and the

fuzzy set similarity DynaMax. These set methods mandate max-pooling during

the phrase pooling and as such reduce the number of necessary configurations

slightly. In summary we will test cosine, jaccard and DynaMax similarities.

5.2.5 Contextualization

Finally we need to decide whether we want to provide the network with context

around the input phrases or not, see subsection 3.3. We can either forward

only the actual phrase candidate through the network and the output will only

contain token embeddings of that phrase. Or we can forward the whole sentence

through the network and only pick the tokens from the output that correspond

to the phrase we are interested in. The second approach makes use of the

contextualization of BERT or MP-NET to differentiate between word sense of

polysemus words forms. Recall the example from subsubsection 2.4.2:

to execute

He executed the diagnostic tools.

The regime executed thousands of innocents.

If we forward each sentence through a BERT model we should get different vec-

tors for the word form executed in the two setences. However if we only forward

executed through the network without any context we would of course get the

same vector twice. From this example it may seem like adding context infor-

mation is always beneficial. However, in these models the context information

will also shift vectors of monosemous words. Further contextualisation might

lead to better semantic representation while removing syntactic informations.

As such we test both contextualized and non-contextualized configurations.

5.2.6 Configuration parameter

While word embeddings are firmly established in the NLP domain word embed-

dings from transformer models is still under investigation. So far it seems like

there is not one configuration that generally performs the best. Further we hope
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to strengthen the evidence in favor of set-similarities, Finding 3.5 and subword-

tokenization, subsubsection 5.2.3, to lend more credibly to their advances. In

total this leaves us with the following variables to test on our CCR dataset:

• Model

– [fasttext] FastText
– [bert-base] Bert
– [mpnet-base] MpNet

• Training dataset

– [clr] Clarus requirements.
– [clf ] Clarus freetext.
– [pr] Pure requirements.

• [U] Training duration in batch update steps
• [L] Layers to be combined

– [all] considers all layers
– [-4] considers the last four layers
– [-1] only considers the last layer

• [P] Pooling (Layer pooling)

– [avg] averages vectors
– [max] takes the max value in each dimension out of all vectors
– [con] concatenates the layer vectors together

• [ST] Subword pooling

– [avg] averages vectors
– [max] takes the max value in each dimension out of all vectors
– [first] uses only the first token of each word
– [last] uses only the last token of each word

• [S] Similarity metric

– [cos] averages vectors, implies average phrase pooling
– [dyn] DynaMax similarity as proposed by [], implies max phrase

pooling
– [jac] jaccard similarity for fuzzy sets, implies max phrase pooling

• [C] Contextualization

– [True] makes use of contextualization.
– [False] ignores context.

For the remainder of the thesis we will use an abbreviated notation to express

configurations. The abbreviations for each parameter can be found in square

brackets withing the above table. For example:

bert-base clr U48 Lall Pcon Sjac STfirst CTrue

would refer to the bert-base model trained on the Clarus requirements for 48

batch updates using contextualized word embeddings from layer concatenation
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on all layers, first-token subword pooling and max phrase pooling since it uses

the jaccard fuzzy set metric. Each configuration can then be evaluated on our

test dataset. Note that the FastText model only has a single hidden layer

and performs subword pooling implicitly. Thus, the parameter for layer choice,

layer pooling and subword token-pooling are all fixed. As such all FastText

configurations will contain Lall,Pmean.
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6 Results

In order to compute recall, precision, and F1 metric we need to define a threshold

similarity value. Given a threshold for our similarity score we can determine

which phrase pairs are predicted to be coreferent. We can then compare the

predicted to the actual coreference pairs recorded in the dataset to determine

which are true positives or hits. Once we know the number of true positives we

can compute recall, precision and F1 as follows:

Recall =
True Positive

True Positive + False Negative
=

True Positive

Actual Positive

Precision =
True Positive

True Positive + False Positive
=

True Positive

Retrieved

F1 = 2 · Precision · Recall

Precision + Recall

The number of actual positives is the number of coreferences in the test set,

section 4, in our case 72.

6.1 Noun chunking results

Using the candidate selection described in subsection 5.1 we were able to find 137

of the 144 ( 95%) coreference phrases of the test set among the candidates. This

is in line with the findings of [JK95] we discussed earlier, subsubsection 2.6.1,

that found 92.5%-99% of all terms to contain nouns. The 7 missing phrases are

part of 5 different requirement pairs which will limit the recall of the overall

pipeline to 67/72. This will give the remaining pipeline a recall ceiling of

≈ 0.93. Out of the 7 missing phrases we were unable to detect the correct

descriptors for a noun in 3 cases. For example, our system found schedule but

the phrase we were interested in was configured schedule. In addition, our system

can only handle a single join keyword(J) in phrases like data and information

sharing. However, there were 2 instances where the constructed phrases in

the test set extend over multiple joining keywords. The two missing phrases are

guidelines for sharing and using data and information and data and information

sharing and use policies. Furthermore we had one instance of an enumeration

latitude, longitude, and elevation as coreference for geographic coordinates. And

finally, one typo that managed to pass the review process and was only detected
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after all tests had been performed.

For most requirements we extract multiple coreferences candidates. In our

pipeline, section 5 Figure 9, we compare all candidates in an pairwise manner.

In the test set an average of ≈ 7.9 comparisons are necessary per requirement

pair. As such we get a precision baseline for our pipeline of ≈ 0.126 for

selecting coreference pairs out of the candidates at random.

6.2 Pipeline results

As mentioned in the beginning of this section we need to decide on a similarity

threshold before we can compute recall or precision. The ideal threshold will of

course vary between models but also based on the use case. Instead of choosing

a specific threshold recall, precision, and f1 are plotted against the threshold,

Figure 11. The threshold starts at 0.1 and is increased by 0.05 until the upper

bound of 1 is reached. We use these increments to create all metric-threshold

graphs in the thesis. The similarity metrics18 used throughout the different

configurations can return values outside of the [0.1, 1] range. However, our

pipeline only returns the best match between two requirement pairs we pick

only the largest similarity score of on average ≈ 7.9 comparisons. As such in

practice no requirement comparison returned values below 0.1. In fact, for most

model configurations the minimum similarity score returned is far higher. This

leads to the plateau on the left of each of the three graphs in Figure 11. In

general, the recall graph shows us how many of the coreferences within the test

set we were able to identify. Keep in mind that our candidate selection limits

us to 93% recall since we are missing the candidate phrases to even compare

the rest. Moving to the precision graph we notice that it stays more or less

constant even beyond the initial plateau. This indicates that our similarity

score does not really manage to rate how similar two phrases are. No matter

how we choose the threshold the proportion of correct to incorrect results stays

more or less the same. This further implies that sorting our results by similarity

would not show the best matches first. As we approach the right side of the

graph the precision graph becomes erratic. This is caused by our rather small

dataset. As we increase the threshold we reduce the number of pairs that are

found. As the number of pairs is reduced even a single additional correct or

incorrect pair will have a stronger and stronger effect on precision. Finally, the

F1 graph displays the harmonic mean of the previous two graphs. This makes

it easier to identify how the previous two graphs affect each other. Ideally, we

would like to achieve a recall and a precision of one. Realistically there is often

18The cosine similarity for example returns values in the range [−1, 1].
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Figure 11: Our evaluation metrics for a single configuration of the FastText
modell.

a trade-off between the two. Ignoring the candidate selection, a recall value of 1

could easily be achieved by reporting all possible combinations of phrases. This

would of course return mostly useless results and precision close to the precision

baseline of 0.126. As such we will always want to optimize for both to some

extend and the F1 graph provides us with an indication for this tradeoff.

6.2.1 Recall and F1

Given the large number of parameter we are evaluating we have a total of

around 4000 model configurations. As such we need a selection criterion to pick

a few configurations at a time that we can evaluate. The selection criterion is

our window into the data and will at the end define what we consider to be

important. When choosing a selection criterion we have to be careful to only

use operations that are threshold shift invariant. For example, when selecting

for the maximal recall value in a graph it does not matter at what threshold

value the maximum occurred. As such taking the maximum is invariant against

shifts of the underlying similarity distribution. Selecting for the best mean value

for example would benefit models that have the falloff at a higher threshold.

We will start by selecting for configurations with the largest recall. This will

give us an idea of what the best recall that we can achieve with any of the tested

models is. Then if we later change the selection criterion we know how much

recall we are sacrificing. We find the highest recall overall threshold values for

each configuration then select the ten configurations with the highest maximum,

Figure 12. We note a max recall just under 0.8. We can see that the correlation

between precision and threshold is very weak and in some cases even negative. If

we increase the threshold and the precision stays constant it means that whether

a phrase pair has a similarity of 0.3 or 0.9 does not affect how likely it is that
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Figure 12

Figure 13

we found a coreference. We further note that all transformer models (BERT) in

this top ten make use of all 13 layers. Surprisingly layer concatenation does not

seem to provide a significant advantage despite producing vectors 13 times the

size of the averaged vectors. FastText shows surprisingly strong performance

and achieves the highest total recall of all models. It seems that our task-

independent domain fine-training provided little to no benefit to the transformer

models in our selection. The transformer models here all use either unmodified

weights(U0) or very little training (U16 or about 1/3 epoch). FastText on the

other hand seems to benefit from pretraining even when selecting for recall.

When selecting for max(F1), Figure 13, most observations remain the same to

the previous graph. However, we note slightly higher and wider peaks in the

precision graph and subsequently in the F1 graph. By making precision relevant

to the performance we notice that all selected models seem to now benefit from

our training. This is relevant to differentiating coreferences from random phrase

pairs and can be measured by precision.
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(a) Pearson correlation of 0.7 and max
precision of 1.

(b) Pearson correlation of 1 and max
precision of 0.8.

Figure 14: Graph (a) has a moderate correlation overall, despite having a near
perfect correlation in the threshold range, we are actually interested in. This
can cause graph (b) to have a higher combined score even though we might
prefer graph (a).

6.2.2 Precision

So far we have only considered precision indirectly through the F1. Selecting for

good precision is not as easy. There are a number of configurations that actually

reach a precision of 1. Thus selecting for maximum precision is less useful. We

have already analyzed the precision threshold correlation in the previous graphs.

And if we want to be able to sort our CCR results by their similarity score we

need a positive correlation between precision and threshold. If there is zero or

very little correlation raising the threshold is equivalent to removing pairs at

random. However, analyzing selected configurations for correlation and selecting

configurations based on their correlation are two separate issues. We note that

the correlation is also invariant to threshold shifts. Correlation itself does not

select for high or low values so we will need to combine it with other criteria like

maximal precision. For now, we need to make sure that selecting for correlation

is not discarding wanted configurations.

Lets us consider the following example, Figure 14. The graph on the left, Fig-

ure 14a, first dips down and then rapidly grows to a precision of 1. Due to

its initial dip its pearson correlation is lower lets say at 0.7 even though the

correlation in the relevant region, in green, is near perfect. Regardless this gives

us a combined score19 of max(precision) · pear(precision) = 0.7. The graph on

the right Figure 14b has a perfect correlation but maximal precision of 0.8 for

a combined score of 0.8. As such adding a correlation criterion will slightly dis-

19We will consider how to combined criteria later. Here we simply multiply the maximum
precision value with correlation for a combined score.
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Figure 15

Figure 16

courage the graph on the left. However, this also encourages less erratic graphs

that grow linearly. We have not seen any graphs that follow a shape as.

More importantly we are also discouraging, possibly removing, configurations

that have low correlation but consistently high precision. As such we should

check the highest precision configurations to see how much we are giving up to

select to be able to properly sort our results. In Figure 15 we can see that the

configurations with the highest precision scores all exhibit strong correlations.

We can see that using correlation as the selection criterion will not cut as off from

this models. When selecting for the best correlation, Figure 16, we notice very

similar distribution in the majority of the precision graph. Though Figure 15 has

a slightly stronger slope and rewards configurations that break out to precision

of 1. With this we feel confident to use correlation as part of our selection

criterion20.

On closer inspection of Figure 16, we notice that almost all variables that we

investigate throughout the different configurations have change compared to the

recall/F1 selection in Figure 12. Selecting for precision has not left a single con-

20For future evaluations we recommend to use a top-n true positive rate ranking rather than
the evaluation performed in this thesis.
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figuration in the top ten that makes use of all layers. This is in line with previous

observations that found that later layers contain more semantical information.

However, the perhaps most exciting change happens for model and similarity

choice. Both MP-NET and the Jaccard index were almost non-existent in the

previous evaluations and now dominate the field exclusively. This is especially

noteworthy as it goes against the almost exclusive use of cosine similarity within

NLP literature. With our selection criterion, we were able to find at least ten

configurations with a strong correlation in the precision graph. Let us reiterate

how crucial a positive correlation between precision and threshold is.

Next, we combine multiple criteria to find those model configurations that both

exhibit a precision-threshold correlation and a high F1 score. We could simply

take the average criterion, e.g. 1
2 (max(F1) + pear(Precision)). This would al-

low a model configuration to completely ignore one component if the other is

sufficiently large. Instead, we decided to multiply the different criteria. Concep-

tually this considers the area enclosed by both variables and is commonly used

to create objective functions over multiple objectives[SD94]. This way we look

for models that consider both criteria. Unfortunately, we struggle to find any

models that strike a good balance between our selected goals. In this graph Fig-

ure 17, we can see that the fastText models are clearly seperated from the other

models. Generally, we found the variability to be between different FastText

configurations to be less pronounced. As FastText only uses a single hidden

layer two of our model parameters are eliminated. Or rather they are implicitly

set for us. We assume this to be the source of the reduced variability. While the

selected FastText configurations exhibit a slightly positive precision-threshold

correlation score the correlation is weaker.

In our test set about half of all requirement pairs contain a coreferent phrase.

In an actual requirement set, this ratio is likely to be drastically lower. Further,

every requirement will need to be compared to every other requirement. As

such the number of comparisons will be significantly larger. This implies that

precision will be much lower on a real requirement set. Nonetheless, configu-

rations that perform better on our test set should also perform better on real

datasets. However, this does imply that we should put a stronger emphasis on

precision when selecting configurations in our test set. The pearson correlation

we used before does not select for a high precision only for a strong correla-

tion. This means that we are only relying on the F1 score to also select for

high precision values. In order to select for higher precision values we can ei-

ther multiply max(Precision) or mean(Precision) to our selector expression. As

discussed before both options have their drawbacks.

We choose to present the max(Precision) in Figure 18. However, using mean
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Figure 17

Figure 18

gives a very similar graph. We can see that a stronger emphasis on precision

once again selects networks that make use of the last or last four layers and

Jaccard similarity. While we lose about 0.1 max F1 compared to the highest F1

in Figure 13 we believe the trade-off is necessary. The selected configurations

have a precision of around 0.6 at the peak F1 threshold. As such more than

half of the results our pipeline produces are correct. Keep in mind that most

requirements have 4 or 5 phrases that have to be compared. A random guess

would therefore achieve a precision of 1
42 or 1

52 .

6.3 Parameter investigation

We believe that this final selection criterion puts a sufficient focus on precision

without completely neglecting recall. We already made some observations based

on the top ten results in each selection. We will now further investigate our

findings by plotting all configurations in the space spanned by our final selection

criterion. To collapse the three components of our selection criterion into two

dimension for plotting we consolidate (max(Precision) ∗ pear(Precision)) into

our combined precision measure. This combined precision measure is be plotted
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on the y-axis. The x-axis will show the max(F1) and give us a representation

of the overall performance of each configuration. Thus the graph will show the

precision performance vs overall performance for each configuration. We can

then color the configurations based on which parameter they use. We plotted

the graph Figure 19 multiple times21 and just changed which configuration

parameter we display.

6.3.1 Contextualization

First we investigate the contextualization. For this we color every configuration

that uses contextualization blue and color every configurations that isolate the

phrase in orange, Figure 19a. The graph shows a strong separation between con-

textualized and context-free configurations. Contextualized embeddings have a

correlation between F1 and precision score. At the same time, the contextu-

alization seems to severely limit the recall performance. We speculate that

the contextualization embeddings form more unique vectors that depend less

on syntactic features. As we shall see approaches that only rely on syntactic

features reach max-F1 scores of 0.41, subsubsection 6.3.7. As such removing

syntactic information without a more robust semantic embedding will lead to

a worse F1 score. Further, we note that no contextualized configuration has a

combined precision score under 0. This suggests that contextualized embeddings

provide more consistent semantic embedding with a positive Pearson correlation

between precision and threshold. The context-free configurations that only con-

sider a phrase without the requirement around it can clearly separate themselves

from the contextualized on the F1 axis. Our other parameters seem to have a

stronger influence on the precision performance as we see a stronger variance in

the context-free configurations. Despite the negative regression line, we can find

a number of configurations that outperform all contextualized configurations in

precision while maintaining a significant lead in F1 score.

6.3.2 Layer Pooling

Moving to the layer choice, Figure 19b, the plot is far less segregated. The

regression lines suggest that using the last four layers leads to the best precision

score followed by all layers and finally choosing only the last layer. However,

looking at the strongest precision configurations at the top of the graph we

notice that both the last as well as the last four layers seem to float above the

21The graphs will vary slightly. For example, when exploring contextualization we will only
plot those models that support contextualization.
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(a) Contextualization (b) Layer choice

(c) Trainingset (d) Model architecture

(e) Similarity metric (f) Subword pooling

Figure 19: Plot of all tested configurations based on their general performance(F1
on x-axis) against their precision performance measured by (max(Precision) ∗
pear(Precision)) on the y-axis. The plot remains the same throughout the figure
but the distribution of different configuration parameter is shown in color.
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configurations that use all layers. Since this is consistent across the whole F1

range we do not think that these are outliers. Instead, we believe that the vector

that results from choosing only the last layer is more dependent on similarity

choice. Whereas choosing the last four layers is a bit more robust across different

similarity and pooling strategies. This confirms the dominant recommendation

to use the last four layers. However, when we switch our focus on the F1 we

notice that a majority of configurations the right edge (F1> 0.5) of the graph

are using all layers.

6.3.3 Trainingset

In Figure 19c we investigate the trainingsets used for domain adaption fine-

training. The choice of training set does not seem to have a strong impact on

the max F1 distribution (x-axis). However, we can clearly see that using the

unprocessed pdf dump (CLF) gives in general the worst precision performance.

This is to be expected as this contains texts that are not directly relevant to

the requirements. Further, the pdf dump contains many incorrect splits which

result in incomplete sentences. Surprisingly some of the strongest configurations

in the top right have also been achieved with the CLF set. These configurations

also earned the CLF trainingset 3 out of the 10 spots in our top 10 ranking,

Figure 18. Unlike the goal-specific requirement set (CLR) that did not secure

any spots. Despite not breaking into the top ten CLR shows the strongest

precision performance among the three trainingsets on average. If we ignore

the results from the contextualized embeddings (F1< 0.4). However, it fails to

establish any configuration at the very top right of the graph. Using all available

public requirements (PR) we find a patch of configurations that towers above the

rest in terms of combined precision performance (0.425 < x < 0.475, y > 0.332).

This cluster allowed the PR set to take the majority of spots in our top ten

ranking. We believe the PR set offers stronger precision since it is larger and

contains a larger variety of requirements. From this data, we would recommend

future projects to start out using the raw pdf dumps as these are the easiest to

acquire. Then if available fine-training with a large requirement set might offer

some performance benefits though it requires manual effort to establish such

a set. Using only the requirements that we later evaluate provides significant

performance improvements over models without domain adoption.
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6.3.4 Similarity metric

Figure 19e shows a good separation between the cosine similarity and Jaccard.

The Jaccard index consistently provides better precision and worse F1 scores.

This confirms both our previous observations and the claims in [Zhe+19]. They

did also propose their own similarity measure DynaMax based on fuzzy set the-

ory. As such it is necessary to establish a universe set to compute the DynaMax

similarity. In theory, this universe contains all possible word vectors. In prac-

tice, this would not only be too expensive to establish but also too large to store.

They proposed to use the embedding matrix of a static word embedding method

as the universe set. While not discussed in the paper the code22 that was pub-

lished alongside the paper suggests using the vectors of the two phrases that are

being compared as the universe. This may work for full sentences but we found

a universe of 4-10 vectors as is typical with our phrase lengths to be insufficient.

As such we excluded DynaMax similarity from further testing. If one can find a

reasonable universe set choice for transformer models it might outperform the

Jaccard index in terms of precision as was the case for static embedding models

in their publication. One could collect the vectors of all phrases or even bet-

ter all requirements before computing similarities and construct a universe set

from that. Since these vectors are computed anyways this should incur much

computational overhead. The large universe set will however increase the com-

putational cost of computing the similarity itself. However, this will need to

be tested in future works. Overall we feel confident in recommending Jaccard

Index for tasks that focus on semantic similarity such as CCR.

6.3.5 Model architecture

Figure 19d follows a similar distribution as the similarity graph. MP-NET has

a much stronger capability to differentiate between coreferences and random

phrases as seen by its higher precision score. Along with its leading position

on the STS benchmark, we feel confident in recommending MP-net for use in

requirement engineering. While it has a lower F1 score than competing models

it makes up for it by a strong precision score and a similarity metric that allows

to rank results.

22https://github.com/babylonhealth/fuzzymax
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Figure 20

6.3.6 Subword tokenization

Finally, Figure 19f explores the choice of subword token pooling. On average

choosing only the first token of a word and discarding the rest performs on par

with mean pooling. For contextualized embeddings, it performs the best out

of all pooling strategies. This might seem like discarding information leads to

better results. We believe that the cause for the performance gain comes from

avoiding the suboptimal pooling strategies like max- or mean-pooling. Seeing

the last token strategy perform the worst in this task is unsurprising as the

ending of words usually contains grammatical hints and carries less semantic

meaning. Surprisingly max-pooling performs just as badly. Even more surpris-

ing is the location of mean pooling configurations at the top of the precision

scores (x> 0.4,y> 0.3). If we check in the previous graph Figure 19e we find that

most of the configurations in that region use Jaccard similarities. With our intu-

ition gained from the theoretical discourse on set theory, Finding 3.5, we would

expect this mean pooling to perform poorly when paired with Jaccard-Index.

Yet a majority of the strongest configurations use precisely this combination.

6.3.7 Baseline

Based on our scoring function we pick the two best configurations per model

architecture and plot them, Figure 20. We then compare these to two traditional

syntactic text similarities.

First we picked the Levenshtein similarity. It is still widely used and is based

on the number of editing operations needed to convert one string into the other.

We can see from the graph that this offers very poor performance. A much

more recent approach splits each input sequence into tokens much like our neu-

ral networks would. The tokens from each input sequence are then compared
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with each other rather than the whole phrase at once. For each token in the

first phrase, the most similar token in the second phrase is found. Then only the

similarity for the most similar pairs contributes to the overall similarity of the

two phrases. The method is agnostic to the similarity method used to compare

tokens. This approach is known as Mongue-Elkan and has been recently been

generalized to make use of partially assigned pair similarity rather than only

counting strongest pair, [Jim+09b]. We use this generalized method with Lev-

enshtein similarity as the inner similarity between tokens. We can see that its

recall performance is on par with the transformer-based model(Bert, MP-NET).

Its max precision does trail all tested models and also exhibits a negative pear-

son correlation. Regardless it is impressive how close this simple approach gets

to the tested methods. Or the other way around it is disappointing that despite

the massive computational cost of tested models the gap in the max F1 score is

rather small with 8-15%. The saving grace of the transformer models lays in the

precision performance which as argued above, section 6, is more relevant to the

CCR task as well as any other search task. We have also seen in Figure 19a that

our model loses recall if syntactic information is confuscated by contextualiza-

tion. As such these models still rely heavily on syntactic information instead of

deriving and relying on semantics as we had hoped. While the precision curve

reveals the promising progress made with the help of neural networks overall

these methods do not yet offer solid semantic embeddings.

6.4 Supervised phrase similarity

The best models for Semantic Textual Similarity (STS) are supervised models.

That means they have been trained on sentence pairs that have been manually

scored for their similarity. There are both test and training sets available for

the STS task that are based on sentence pairs. At the time of writing the model

with the strongest performance on these test sets is a MpNet23 that has been

fine-tuned on cosine similarity. This means that if we want to continue fine-

tuning on our domain we would need a training set with manually collected

similarity scores. If we had enough coreference pairs we might be able to fine-

tune them instead. Since this is not the case we do not have the ability to

adapt the model. Further, since it has been fine-tuned with pooling operation

and similarity metric locked in place all our configuration parameters we tested

previously are set and baked into this model. In Figure 21 we graph both the

supervised model that has been evaluated on our test set as well the strongest

recall, precision24 and F1 configuration of the unsupervised models we discussed

23https://www.sbert.net/docs/pretrained_models.html
24The best precision is selected as before by (max(Precision) ∗ pear(Precision)).
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Figure 21: Publicly available supervised MpNet (mpNetSup) compared to best
recall, precision and F1 unsupervised fine-trained model configurations from
our test. Best recall is achieved by the FastText model, best precision by the
unsupervised MpNet and best F1 by the Bert model.

above.

We notice that the supervised model can not outperform the unsupervised and

domain fine-trained models, in any metric. Its max recall is below both FastText

and Bert. It has a strong precision across the whole threshold range. However,

it struggles to differentiate coreferences from random phrases on larger simi-

larity values as seen by the drop in precision (0.5 < x < 0.85). The max F1

score is just slightly below the peak of the BERT graph. Overall the super-

vised model performs better than the syntactical algorithm MongeElkan. The

supervised model is a solid choice especially since no training is required for this

performance. Our fine-trained MpNet does have a significantly higher precision-

threshold correlation and overall precision performance. As such we conclude

that unsupervised domain fine-training can yield significant advantages over

semi-task specific25 supervised models that rely entirely on transfer learning26.

6.5 Qualitative evaluation

For a qualitative evaluation we apply mpnet clf U15 L-4 Pmax Sjac STfirst model

configuration to a list of requirements. We compare all possible pairs with our

pipeline and record the resulting coreferences. We then manually inspect these

results.

25This model is trained on STS task while similar to CCR it is not the same so we refer to
it as semi-task specific.

26Transfer learning here refers to the fact that the supervised model was trained on a
different domain and will apply the learned knowledge to CCR task on requirements. As
such we implicitly test how well this model transfers knowledge from the training domain to
requirement engineering.
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Ideally, we would like to apply our pipeline to a collection of requirements that

have not yet been worked through by a requirement engineer. Unfortunately,

all requirement specifications we could find are from finished projects. These

specification documents had months if not years to mature. As such it is unlikely

that many relevant coreferences remain. Nevertheless, analyzing the output

on such a dataset can give us insights into false positives. This can help to

develop filter rules we can apply to the output to improve performance on real

requirement sets.

For the evaluation, we choose the model configuration and the RiskPrevention

dataset [SNK18] which is not part of the PURE requirement collection. First, we

remove phrase duplicates, which means phrase pairs that are either duplicated

or permutated. As we do not use contextualization the assigned similarity will

be the same regardless of the context(requirement) they are used in. While

it might be useful for a human evaluator to view all instances of a critical

coreference pair most will not require additional examples. In the remaining

results, Appendix C, we noticed three patterns that lead to false positives.

The first group consists of slight spelling variations of phrase pairs for example

”course time-table page” and ”course time-tables page”. These types of errors

or grammatical variations are not what we are trying to address with CCR. As

such these kinds of results might confuse the end-user. We should be able to

differentiate these spelling errors from other results by computing the Leven-

shtein distance between phrases. The Levenshtein distance counts how many

characters need to be changed to transform one phrase into the other. It stands

to reason that any phrase pair that is only one or two character changes away

from the other is just a gramatical variation of the other. Depending on the

application some of these results might be typos and as such still useful. Though

as already mentioned they should probably be presented to the end-user sepa-

rately.

The second group consists of phrase pairs that are identical in all but one word.

For example ”reports on bed availability about the following information” and

”reports on patients about the following information”. We can see that both

phrases have a strong overlap which will improve their similarity score. Also,

it seems our noun chunking was a bit too eager. Finally patient and bed are

in the same general domain of health so it makes sense if their embeddings

would be close to each other in at least a few dimensions. We should be able to

mitigate these false positive to some extend by isolating the core of the phrases

that actually differs. This core needs to be retested. Whether it’s best to

reuse the same VSM or use a different model remains to be seen. If the phrase

core is a single word we also have the option to explore Knowledge Base (KB),
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subsection 2.7. This coincides with the third pattern and will be explained in

the next paragraph.

The third group consists of single nouns that are not coreferent. For example

http and chat or server and transaction. Most of these word pairs are used in

the same domain. We can probably find a lot of examples where server and

transaction occur in the same sentence. As by the distributional hypothesis

section 3 that all VSM are based upon these words should be closer to each

other. As such it will be difficult to use any VSM to differentiate between these

types of word pairs and actual coreferences. Fortunately, since these are single

words we now actually have the option to use a Knowledge Base (KB) like

WordNet. As discussed in subsection 3.6 WordNet records the relation between

word senses, not phrases. So while we can not use it to compare phrases it might

help us to make sense of these word pairs. For example, if a synonym relation

between the words is recorded we can confirm the coreference. If an antonym

relation is recorded instead we can be sure that the pair is not coreferent. This

only works if we can find both words in WordNet. As explained this is unlikely

to succeed for all words but should work for 90+% of cases. We could apply

the same method to differing phrase cores from the previous paragraph as long

as both cores contain only a single word.

We leave the actual implementations and exploration of the output filtering to

future works.

7 Future works

7.1 Fuzzy set similarity

We have established that the Jaccard index outperforms cosine similarity in

our tests.[Zhe+19] proposed their own similarity measure DynaMax based on

fuzzy set theory. Unfortunately, the DynaMax similarity proposed by the same

paper failed in our tests. Since the transformer models do not provide a simple

embedding matrix that we can use as a universe set, we instead used a drastically

reduced universe set that only contains the vectors of the two input phrases.

Unsurprisingly, this similarity measure does not perform well without a proper

universe matrix. Exploring the extraction of such a universe set could add

another 3-5% precision if similar improvements over Jaccard as reported in

the paper can be attained. As mentioned in subsubsection 6.3.4 we leave the

exploration of universe sets to future works.
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Figure 22: Each arrow depicts the amount of work to go from one word in
phrase to a word in another phrase. If the word count does not match some
words need to contribute to multiple words from the other phrase. Figure from
[Kus+]

7.2 Token based phrase similarity

We saw that similarity metrics on token rather than phrase-level can offer signif-

icant advantages as was the case when switching from Levenshtein to Mongue-

Elkan. For our vector similarities, we instead merge the token representations

with pooling. Since Mongue-Elkan leaves the choice of the inner similarity mea-

sure between tokens open, it should be possible to use both cosine and Jaccard

similarity here.

A similar idea has been implemented by [Kus+]. Their perspective on the task

is based on the Earth Mover Distance (EMD). Conceptually, EMD imagines

each input as piles of earth in a domain. It then computes the minimal amount

of effort to turn the piles from the first input into the piles of the second input.

Of course, this requires both inputs to contain the same amount of dirt. Or in

other words, the inputs need to be normalized. They consider each token as a

pile of dirt and the euclidean distance between word vectors as the cost to turn

one pile into the other, Figure 22 upper half. As we assume the amount of dirt

to be the same in both phrases this also works for phrases of differing length.

Then the dirt needs to be collected from multiple piles. As such, they also

avoid phrase pooling, Figure 22 lower half. They only evaluate their approach

on classification and sentiment analysis. Testing this approach on semantic

similarity benchmarks could be a valuable contribution.
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7.3 Extended trainingset

One surprising result from our training was the performance of some configura-

tions fine-trained with the Clarus free-text dataset. Despite the lack of process-

ing some configurations performed among the best. It would be interesting, to

collect the text specifications from all PURE projects and compare the perfor-

mance to that of the PR set. This would extent PR with context information

just like CLF extended CLR, subsubsection 5.2.2. We would expect slightly

higher precision scores and slightly lower F1 max values, if it follows the same

pattern as switching from CLR to PR.

7.4 User Interaction

Detecting coreferences is crucial. Detection is of little practical use if we do not

also offer a way to resolve them. As we have seen, the pipeline presented in

this thesis offers good results but is far from fail-safe. As such the resolution

of coreferent phrases will require the help of humans for the foreseeable future.

Presenting an author with an unsorted list of potential coreferences is probably

not the most effective approach. In this thesis, we have laid the groundwork for

a successful user interface by placing a strong emphasis on precision-threshold

correlation. As previously explained this allows us to sort results by similarity

score. Thus enabling to show the most relevant coreferences first. Besides

the coreferent phrases, the user needs to see the requirements that the phrases

originated from. In some cases, the user might even need to look at surrounding

requirements or the section title. The interface might also provide the option

to automatically replace the less common with the more common phrase. This

would allow the user to apply the resolution with a single click. A well-structured

interface that provides the user with the necessary information is crucial for the

practical application of CCR to requirements engineering.

7.5 Reoccurring phrases

In this thesis, we only compare two requirements at a time. This means we treat

each occurrence of a phrase separately. Recall that we assumed identical phrase

forms to be trivially coreferent. In other words, we assume that identical phrases

refer to the same component within one project. We do not need to resolve

these different occurrences. However, we could use the different requirements

that these phrases occur in to extract multiple contextualized embeddings for

the same phrase. This could provide a more complete representation of the
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component.

The obvious problem is that this requires contextualized embeddings. Other-

wise, we would only feed the phrase form through the network and get the same

embedding independent of the requirement the phrase was cut out of. While we

believe that contextualized embeddings are a necessary step to handle polysemy,

we have seen, subsubsection 6.3.1 that for now, foregoing contextualization of-

fers significant F1 score improvements. However, once models that can handle

contextualization more robustly are available, considering multiple occurances

should offer precision score improvements.

For now, however, we only use static embeddings as such we do not need to

compare requirement pairs and can instead compare phrase pairs. This also

allows us to reduce the number of phrases that need to be compared by removing

duplicates.

8 Conclusion

In this thesis, we established a basic overview of the linguistic challenges of

word similarity and synonym detection. We then presented the general ideas

current natural language models use to tackle these challenges. We condensed

the abstract task of synonym detection to a better-defined task of detecting

coreferences in project components specifically for requirements engineering.

We propose the novel term component coreference resolution (CCR) for this

task. While we are not the first to tackle this task, to the best of our knowledge,

no term has been established or proposed until now. Further, we are the first to

publish a test dataset on the task. We proposed a fully unsupervised approach

that tackles the whole CCR task from phrase detection to semantic comparison.

The core of our CCR pipeline lays in the semantic vector embedding of phrases.

The idea of using vector embeddings created by neural networks is well estab-

lished. However, for more recent models it is not clear what the ideal way to

extract, combine and compare vectors is. We tested the most common and

some promising new approaches. We showed that all models benefit from un-

supervised domain fine-training. We also demonstrated that even training with

a minimally prepossessed pdf extraction can provide substantial performance

gains. From our results, we would recommend to develop and test models on

pdf extractions to avoid the semi-manual requirement extraction. This should

be sufficient to evaluate the different systems. To achieve peak performance, a

training-dataset with more pre-processing might be necessary.
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We have found contextualized embeddings to provide more consistent results at

the cost of a substantially lower recall. Our tests indicate that contextualiza-

tion might generally result in worse phrase similarity measures for the current

generation of transformer models. Another surprising result is the sub-par per-

formance of the almost exclusively used cosine similarity in the NLP community.

Instead, we investigated the Jaccard Index and found its precision score to out-

perform cosine in most instances. Further Jaccard similarity seemed to provide

a stronger precision threshold correlation. This is essential for tasks beyond

CCR. For example, a semantic search would want to rank the search results

based on their similarity. This is only sensible if the model configuration ex-

hibits a strong positive correlation between precision and threshold. We feel

confident in recommending the use of Jaccard Similarity and avoidance of con-

textualization for phrase similarity for the models tested in this thesis. [ÁKK21]

proposed subword pooling but only considered cosine similarity in their exper-

iments. To our knowledge, this thesis is also the first publication to evaluate

both subword token pooling and similarity metrics together. While our tests

are not conclusive one surprising finding is that subword average token pooling

paired with Jaccard similarity performs on par with other configurations.
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[LJ19] Daniel Loureiro and Aĺıpio Jorge. “Language modelling makes

sense: Propagating representations through WordNet for full-coverage

word sense disambiguation”. In: Proceedings of the 57th annual

meeting of the association for computational linguistics. Florence,

Italy: Association for Computational Linguistics, July 2019, pp. 5682–

5691. doi: 10.18653/v1/P19-1569. url: https://www.aclweb.

org/anthology/P19-1569.

79

http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1508.06615
https://doi.org/10.1007/s00766-008-0063-7
https://arxiv.org/abs/2010.05738
https://doi.org/https://doi.org/10.1016/S0740-8188(99)00007-9
https://doi.org/https://doi.org/10.1016/S0740-8188(99)00007-9
https://www.sciencedirect.com/science/article/pii/S0740818899000079
https://www.sciencedirect.com/science/article/pii/S0740818899000079
https://www.sciencedirect.com/science/article/pii/S0740818899000079
http://arxiv.org/abs/1707.07045
http://arxiv.org/abs/1707.07045
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1569
https://www.aclweb.org/anthology/P19-1569
https://www.aclweb.org/anthology/P19-1569


[Mar+19] Marco Maru et al. “SyntagNet: Challenging Supervised Word Sense

Disambiguation with Lexical-Semantic Combinations”. en. In: Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP). Hong Kong,

China: Association for Computational Linguistics, 2019, pp. 3532–

3538. doi: 10.18653/v1/D19-1359. url: https://www.aclweb.

org/anthology/D19-1359 (visited on 05/30/2021).

[Mar11] G.R.R. Martin. A game of thrones. Fantasy (bantam books). Ban-

tam Books, 2011. isbn: 978-0-553-38679-0. url: https://books.

google.de/books?id=hXNvadj27ekC.

[Mik+13] Tomas Mikolov et al. Efficient estimation of word representations

in vector space. 2013.

[Mil+90] George A. Miller et al. “Introduction to WordNet: An on-line lexical

database”. English. In: Journal of Lexicography 3.4 (1990), pp. 235–

244. url: ftp://ftp.cogsci.princeton.edu/pub/wordnet/

5papers.pdf.

[Mil95] George A. Miller. “WordNet: A lexical database for english”. In:

Communications of the ACM 38.11 (Nov. 1995), pp. 39–41. issn:

0001-0782. doi: 10.1145/219717.219748. url: https://doi.

org/10.1145/219717.219748.

[Mit99] Ruslan Mitkov. Anaphora resolution: the state of the art. Citeseer,

1999.

[MM02] Rada Mihalcea and Dan Moldovan. “eXtended WordNet: progress

report”. In: (Aug. 2002).

[MR19] John P McCrae and Alexandre Rademaker. “English WordNet 2019

– An Open-Source WordNet for English”. en. In: (2019), p. 8.

[Nav18] Roberto Navigli. “Natural language understanding: Instructions for

(present and future) use”. In: Proceedings of the twenty-seventh

international joint conference on artificial intelligence, IJCAI-18.

International Joint Conferences on Artificial Intelligence Organiza-

tion, July 2018, pp. 5697–5702. doi: 10.24963/ijcai.2018/812.

url: https://doi.org/10.24963/ijcai.2018/812.

[Ng17] Vincent Ng. “Machine learning for entity coreference resolution: A

retrospective look at two decades of research”. In: Proceedings of

the thirty-first AAAI conference on artificial intelligence. AAAI’17.

AAAI Press, 2017, pp. 4877–4884.

80

https://doi.org/10.18653/v1/D19-1359
https://www.aclweb.org/anthology/D19-1359
https://www.aclweb.org/anthology/D19-1359
https://books.google.de/books?id=hXNvadj27ekC
https://books.google.de/books?id=hXNvadj27ekC
ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.pdf
ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.pdf
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.24963/ijcai.2018/812
https://doi.org/10.24963/ijcai.2018/812


[NP12] Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: The auto-

matic construction, evaluation and application of a wide-coverage

multilingual semantic network”. en. In: Artificial Intelligence 193

(Dec. 2012), pp. 217–250. issn: 00043702. doi: 10.1016/j.arti

nt.2012.07.001. url: https://linkinghub.elsevier.com/

retrieve/pii/S0004370212000793 (visited on 05/31/2021).

[ORD19] Katrin Ortmann, Adam Roussel, and Stefanie Dipper. “Evaluating

off-the-shelf NLP tools for german”. In: Proceedings of the 15th con-

ference on natural language processing (KONVENS 2019): Long pa-

pers. Erlangen, Germany: German Society for Computational Lin-

guistics & Language Technology, 2019, pp. 212–222.

[Pet+18] Matthew Peters et al. “Deep contextualized word representations”.

In: Proceedings of the 2018 conference of the north American chap-

ter of the association for computational linguistics: Human lan-

guage technologies, volume 1 (long papers). New Orleans, Louisiana:

Association for Computational Linguistics, June 2018, pp. 2227–

2237. doi: 10.18653/v1/N18-1202. url: https://www.aclweb.

org/anthology/N18-1202.

[PLM15] Fabian Pittke, Henrik Leopold, and Jan Mendling. “Automatic de-

tection and resolution of lexical ambiguity in process models”. In:

IEEE Transactions on Software Engineering 41.6 (2015), pp. 526–

544. doi: 10.1109/TSE.2015.2396895.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.

“GloVe: Global vectors for word representation”. In: Empirical

methods in natural language processing (EMNLP). 2014, pp. 1532–

1543. url: http://www.aclweb.org/anthology/D14-1162.

[PSP18] Christian S. Perone, Roberto Silveira, and Thomas S. Paula. “Eval-

uation of sentence embeddings in downstream and linguistic prob-

ing tasks”. en. In: arXiv:1806.06259 [cs] (June 2018). url: http:

//arxiv.org/abs/1806.06259 (visited on 10/28/2021).

[Qi+18] Peng Qi et al. “Universal dependency parsing from scratch”. In:

Proceedings of the CoNLL 2018 shared task: Multilingual parsing

from raw text to universal dependencies. Brussels, Belgium: Asso-

ciation for Computational Linguistics, Oct. 2018, pp. 160–170. url:

https://nlp.stanford.edu/pubs/qi2018universal.pdf.

[Rad+18] Alec Radford et al. “Language Models are Unsupervised Multitask

Learners”. en. In: (2018), p. 24.

[RG19] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embed-

dings using siamese BERT-Networks”. In: CoRR abs/1908.10084

(2019). url: http://arxiv.org/abs/1908.10084.

81

https://doi.org/10.1016/j.artint.2012.07.001
https://doi.org/10.1016/j.artint.2012.07.001
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000793
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000793
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.1109/TSE.2015.2396895
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1806.06259
http://arxiv.org/abs/1806.06259
https://nlp.stanford.edu/pubs/qi2018universal.pdf
http://arxiv.org/abs/1908.10084


[Rob+16] Marcel Robeer et al. “Automated Extraction of Conceptual Models

from User Stories via NLP”. en. In: 2016 IEEE 24th International

Requirements Engineering Conference (RE). Beijing: IEEE, Sept.

2016, pp. 196–205. isbn: 978-1-5090-4121-3. doi: 10.1109/RE.201

6.40. url: https://ieeexplore.ieee.org/document/7765525/

(visited on 05/24/2021).

[SD94] N. Srinivas and Kalyanmoy Deb. “Muiltiobjective optimization us-

ing nondominated sorting in genetic algorithms”. In: Evolutionary

Computation 2.3 (1994), pp. 221–248. doi: 10.1162/evco.1994.

2.3.221.

[SJ15] Unnati S. Shah and Devesh C. Jinwala. “Resolving ambiguities in

natural language software requirements: A comprehensive survey”.

In: SIGSOFT Softw. Eng. Notes 40.5 (Sept. 2015), pp. 1–7. issn:

0163-5948. doi: 10.1145/2815021.2815032. url: https://doi.

org/10.1145/2815021.2815032.

[SNK18] Zain Shaukat, Rashid Naseem, and Muhammad Zubair Khan. “A

dataset for software requirements risk prediction”. In: Oct. 2018,

pp. 112–118. doi: 10.1109/CSE.2018.00022.

[Son+20] Kaitao Song et al. “MPNet: Masked and permuted pre-training for

language understanding”. In: CoRR abs/2004.09297 (2020). url:

https://arxiv.org/abs/2004.09297.

[Spa88] Karen Sparck Jones. “A statistical interpretation of term speci-

ficity and its application in retrieval”. In: Document retrieval sys-

tems. GBR: Taylor Graham Publishing, 1988, pp. 132–142. isbn:

0-947568-21-2.

[SPN20] Bianca Scarlini, Tommaso Pasini, and Roberto Navigli. “With More

Contexts Comes Better Performance: Contextualized Sense Em-

beddings for All-Round Word Sense Disambiguation”. en. In: Pro-

ceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP). Online: Association for Computa-

tional Linguistics, 2020, pp. 3528–3539. doi: 10.18653/v1/2020.

emnlp-main.285. url: https://www.aclweb.org/anthology/

2020.emnlp-main.285 (visited on 05/23/2021).

[SWY75] G. Salton, A. Wong, and C. S. Yang. “A vector space model for

automatic indexing”. In: Communications of the ACM 18.11 (Nov.

1975), pp. 613–620. issn: 0001-0782. doi: 10.1145/361219.36122

0. url: https://doi.org/10.1145/361219.361220.

82

https://doi.org/10.1109/RE.2016.40
https://doi.org/10.1109/RE.2016.40
https://ieeexplore.ieee.org/document/7765525/
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1145/2815021.2815032
https://doi.org/10.1145/2815021.2815032
https://doi.org/10.1145/2815021.2815032
https://doi.org/10.1109/CSE.2018.00022
https://arxiv.org/abs/2004.09297
https://doi.org/10.18653/v1/2020.emnlp-main.285
https://doi.org/10.18653/v1/2020.emnlp-main.285
https://www.aclweb.org/anthology/2020.emnlp-main.285
https://www.aclweb.org/anthology/2020.emnlp-main.285
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220


[Tak+18] Kazuma Takaoka et al. “Sudachi: a Japanese tokenizer for busi-

ness”. In: Proceedings of the eleventh international conference on

language resources and evaluation (LREC 2018). Miyazaki, Japan:

European Language Resources Association (ELRA), May 2018.

url: https://www.aclweb.org/anthology/L18-1355.

[TH19] Daniel Toews and Leif Van Holland. “Determining domain-specific

differences of polysemous words using context information”. In:

Joint proceedings of REFSQ-2019 workshops, doctoral symposium,

live studies track, and poster track co-located with the 25th inter-

national conference on requirements engineering: Foundation for

software quality (REFSQ 2019), essen, germany, march 18th, 2019.

Ed. by Paola Spoletini et al. Vol. 2376. CEUR workshop proceed-

ings. CEUR-WS.org, 2019. url: http : / / ceur - ws . org / Vol -

2376/NLP4RE19_paper02.pdf.

[TP10] Peter D. Turney and Patrick Pantel. “From frequency to meaning:

Vector space models of semantics”. In: CoRR abs/1003.1141 (2010).

url: http://arxiv.org/abs/1003.1141.

[Vas+17] Ashish Vaswani et al. “Attention is all you need”. In: CoRR

abs/1706.03762 (2017). url: http : / / arxiv . org / abs / 1706 .

03762.

[Wal05] Christopher Walker. ACE 2005 Multilingual Training Corpus. 2005.

[Wan+13] Yue Wang et al. “Automatic detection of ambiguous terminology

for software requirements”. In: Natural language processing and in-

formation systems. Ed. by Elisabeth Métais et al. Berlin, Heidel-
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A Word Sense Disambiguation Algorithm

A.0.1 Synset

WordNet also enables us to extract subgraphs. For us, the most interesting

of these subgraphs are the synsets. A synset contains synonyms as a set of

lemmas and their common word sense description (gloss). Using the above

example {trash.n.1, rubbish.n.1, scrap.n.2, waste.n.1}(worthless material that

is to be disposed of) would be a synset. This follows the syntax for synsets from

[SPN20], {l1, . . . , ln}(g). So all lemmas l1, ..., ln are synonym to each other if

their word sense corresponds to the gloss g in a given context. Unfortunately,

these synsets can not express different degrees of synonymity.

A.0.2 SyntagNet

SyntagNet [Mar+19] is a new LKB that records cooccurrence between glosses.

For example {run}(to carry out a process) and {programs}(a sequence of in-

structions) occur more often in the same sentence than words with unrelated

concepts. It contains 88K manually constructed coocurrances linking about 20K

WordNet nodes. When trying to identify the correct word sense the entries in

syntagNet provide a strong indication for the correct word sense. While it is

difficult to benchmark LKB directly we can benchmark other tasks with meth-

ods that make use of an LKB. The authors demonstrated this by combining

SyntagNet with UKB, subsection A.1, to by achieving near State of the Art

(SOTA) results on a WSD benchmark [ALS14]. Note that the WSD task can

not be solved directly with WordNet or SyntagNet but the recorded relations

can be useful for solving the WSD task.

A.1 UKB graph-based WSD

UKB is a collection of graph-based WSD approaches. [ALS14] proposed to apply

PageRank random walk algorithm [Hav+02] to a LKB; here WordNet. For this

they only consider word senses as nodes and then connect them if any type of

relation exists, disregarding the type of relation. Given this graph, the main idea

behind the PageRank is that we randomly walk through a graph and whenever

we go from a node vi to a node vj we increase the rank of the destination node

vj . Instead of only measuring first-order connection the amount of gained rank

of a node vj depends on the rank of the outgoing node vi. This propagates
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the importance of nodes to their immediate surroundings. Conceptually this

random walk is continued until we achieve an equilibrium of the ranks relative

to each other. This will result in a graph that represents the distance between

two word senses. In Figure 23 we presented a small portion of the resulting

graph. Every word sense from the original LKB is present and connected to its

related word senses. Now if we want to resolve the word sense of trash in the

sentence I throw trash into the bin we can do so by finding the shortest path

between each word sense of trash and the context words like trash or bin. Of

course, we do not know the word senses of the surrounding words so we are

looking for the shortest path to any word sense of the surrounding words. The

word sense with the shortest combined path to its neighboring words in the

sentence is then returned as word sense.

Fortunately, this random walk can be reformulated as a linear system and solved

analytically. So far we have static ranks and simply assigned the highest rank

to the dominant word sense, assuming that the authors of WordNet spend more

effort on the dominant sense of a word.

In subsequent investigations [ALS18; ABS15] propose optimized parameters

which achieved an average F1 score of 71% just 6% less than the current SOTA

[SPN20].

To perform WSD we need to take the context into account. We take each word

in the context and determine their lemma. Then for each lemma, we create a

new node in the graph that is connected to all possible word senses as recorded

in WordNet. Then we artificially increase the rank of these new nodes. The new

nodes effectively act as a rank source. After reapplying the PageRank algorithm

we iterate all possible senses of the target word and choose the sense node with

the highest rank.

A.2 ARES context AwaRe Embedding of Sense

[SPN20] propose a new method to automatically extract occurrences of a word

senses from a general text. They aim to create an ideal vector for every lemma

in a synonym set. To create this vector for a particular lemma l in a synset s

they first collect all occurrences of that lemma in the corpus. Each occurrence

comes with its own context. All of these sentences are then forwarded through

a BERT model and its last layers are averaged to give us a separate vector

for each occurrence of the lemma. Since these vectors likely include instances

where the sense of the lemma is different from the sense s the instances that

actually correspond to s need to be identified. The set of vectors is clustered
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Figure 23: Overview of the graph used for the UKB algorithm. Every word
sense in WordNet forms a node. The nodes are connected based on word sense
relations. In the figure we abstracted most of the graph into the cloud icon.
Every word sense on the perimeter has a number of connections to the nodes
inside the rest graph. The PageRank algorithm also provides us with a distance
between two connected nodes. The correct word sense is then selected by esti-
mating the shortest distance from each word sense of trash to the word sense in
its context [throw, bin, into, ...].

with K-NN where K is set to the number of word senses recorded for lemma l.

From each cluster, they take the most relevant words and use UKB to identify

the most likely cluster for s. They use SyntagNet to increase the number of

samples available for each lemma and use an additional concatenation of word

embeddings as described in the exceptionally well-written paper [LJ19]. Finally,

the clusters can be averaged to create a reference vector for each word sense.

The idea of extending the limited sense annotated data with samples from an

unlabelled text builds on the previous works of [Pet+18].

As of Jun 2021, they hold the current SOTA on the average SemEval benchmark

sets with an F1 of 77.9. Despite this impressive performance, their results do

not provide any evidence that the created word sense vectors actually encode

semantics better than the underlying BERT model. It is likely that they simply

added more anchor points to the semantic space provided by the BERT model.

This is akin to overfitting to the WSD task rather than improving the semantic
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mapping that is necessary to identify synonyms beyond those listed in a synset.

B Dataset Construction Guidelines

Hello everyone.

As discussed today I want to create a test set for coreference resolution. For

our application you can think of coreference resolution as a special kind of

synonym resolution. However we focus on domain terminology rather than

general synonyms. Thus we want to create a dataset where we refer to the same

project component with different words. For this we construct requirement

pairs that contain coreferences from an existing dataset. For example given the

following req1:

The Clarus system shall be able to implement quality checking rules

for each environmental parameter.

you will have to:

[CR] construct a requirement req2 that uses a different formulation

for one component e.g.

The Claurus system shall display unused environmental variables.

- or -

[N] construct a requirement that does not contain any non trivial

coreferences. Trivial coreferences are those where we reference the

same component with the same formulation. So it is fine to reuse

“The Claurus system” for this type of requirement. Example:

The Clarus system shall collect, quality check, and disseminate en-

vironmental data.

The source project wants to collect, filter, quality check and save weather and

environmental data to predict effects on transportation of goods and road con-

ditions. When constructing coreferences you have to be mindful of this context.

So while system variable might be coreferent to environmental parameter when

talking about operating systems it will not work here. I attached the original

pdf, please take a few minutes to read page 90-93, APPENDIX A - DEFINI-

TIONS, ACRONYMS, AND ABBREVIATIONS.
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Guidelines:

• Make sure coreferences match in the project domain

• Pick project components not verbs to construct coreferences

• Avoid constructing requirement duplicates. Don’t just exchange a phrase

from the source requirement.

• Avoid repeating previous coreference pairs

• Skip requirements if you can not find a good coreferences

• Go through skipped requirements and construct coreference free require-

ments until u get to roughly 50/50

• You can check the first 50 as further examples.
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C Quantitative Evaluation Output

Table 2: Top 20 results from applying our pipeline with unsupervised MpNet on a requirement

dataset.

Phrase1 Phrase2 similarity Requirement1 Requirement2

the course

time-table

page

the course

time-tables

page

0.817921 The Course

time-Table page will

provide general

course information

without any need of

registration.

The Course

Time-Tables page

basically displays

information

(timings, instructor,

class size,

pre-requisites) of all

the courses offered

at UVic.

the

transaction

processing

system

software

system

the

transaction

processing

system

system

0.812852 There are many

types of 0.25 as such

supported by the

Transaction

Processing System

software system

namely; User 0.25,

Software 0.25 and

Hardware 0.25.

The Transaction

Processing System

system shall

communicate with

CRM system to

provide support.

the student

accounts page

the student

account page

0.790 The Student

Accounts page will

display a student’s

personal and tuition

(monetary)

information. It will

also contain access

to their Netlink

account.

The Student

Account page

contains information

like a student’s

address, tuition

account information,

Netlink account

details, and PinChg.

Continued on next page
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Table 2: Top 20 results from applying our pipeline with unsupervised MpNet on a requirement

dataset. (Continued)

the

transaction

processing

system

the

transaction

processing

system

system

0.769 The Transaction

Processing System

shall communicate

with the content

manager to get the

product

specifications,

offerings and

promotions.

The Transaction

Processing System

system shall

communicate with

export regulation

system to validate

export regulations.

the student

main page

the records

main page

0.766 If a student signs in

they are taken to the

Student Main Page.

If a Records

employee signs in

they are taken to a

Records Main Page.

The Records main

page would allow a

records employee to

process Official

Transcript orders.

reports on

bed

availability

about the

following

information

reports on

patients

about the

following

information

0.747 The HPIMS shall

generate reports on

bed availability

about the following

information: ward

name, bed number,

occupied/unoccupied.

The HPIMS shall

generate reports on

patients about the

following

information:

patient’s PHN,

patient’s name, ward

name, bed number

and the doctor’s

name which was

assigned.

server reservation 0.744 System can

participate in chat

with user and

SERVER.

at time of pickup the

system will allow the

employee to bring up

the specified

reservation and to

print out a rental

agreement.

registration

window for

each users

login window

for each user

0.741 Web site contains

Registration window

for each users.

Web site contains

login window for

each user.

Continued on next page

91



Table 2: Top 20 results from applying our pipeline with unsupervised MpNet on a requirement

dataset. (Continued)

offerings transaction 0.739 The Transaction

Processing System

shall communicate

with the content

manager to get the

product

specifications,

offerings and

promotions.

In the event of a

system crash during

a transaction, the

current transaction

will either completed

or not completed.

This will be handled

by an already

existing database.

reservation requests 0.737 at time of pickup the

system will allow the

employee to bring up

the specified

reservation and to

print out a rental

agreement.

The Employee is

directed to a page

that allows them to

process Student

Record related

requests.

transaction requests 0.736 In the event of a

system crash during

a transaction, the

current transaction

will either completed

or not completed.

This will be handled

by an already

existing database.

The Employee is

directed to a page

that allows them to

process Student

Record related

requests.

administrators compliant 0.733 Administrators shall

be able to view and

modify all

information in

HPIMS.

Web site contains

Compliant issued

dialog box for every

user.

server transaction 0.732 System can

participate in chat

with user and

SERVER.

In the event of a

system crash during

a transaction, the

current transaction

will either completed

or not completed.

This will be handled

by an already

existing database.

Continued on next page
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Table 2: Top 20 results from applying our pipeline with unsupervised MpNet on a requirement

dataset. (Continued)

compliant transaction 0.731 Web site contains

Compliant issued

dialog box for every

user.

In the event of a

system crash during

a transaction, the

current transaction

will either completed

or not completed.

This will be handled

by an already

existing database.

the web site the web

portal

0.727 User should provide

a valid user id and

password to access

the web site.

The system will

provide customers to

login on the web

portal and view

existing reservation

in the system.

compliant http 0.726 Web site contains

Compliant issued

dialog box for every

user.

The protocol used

shall be HTTP.

http chat 0.725 The protocol used

shall be HTTP.

With the

information provided

by administrator

user can directly

contact with system

or he can contact

during their chat.

the payments the reviews 0.724 The Transaction

Processing System

system shall

communicate with

billPay system to

identify available

payment methods ,

validate the

payments and

process payment.

The system shall

display the reviews

and ratings of each

product, when it is

selected.

Continued on next page
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Table 2: Top 20 results from applying our pipeline with unsupervised MpNet on a requirement

dataset. (Continued)

server administrators 0.723 System can

participate in chat

with user and

SERVER.

Administrators are

responsible for all of

the scheduling and

updating day/night

employee shifts.

transaction administrators 0.722 In the event of a

system crash during

a transaction, the

current transaction

will either completed

or not completed.

This will be handled

by an already

existing database.

Administrators are

responsible for all of

the scheduling and

updating day/night

employee shifts.
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