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Abstract

In this bachelor thesis we present a novel approach for simulating transverse-
isotropic materials. In contrast to classical approaches that integrate the
anisotropy into the strain-stress-constitutive model the presented approach
is inspired by the natural structure of timber. A rod simulation that repre-
sents the fibers in timber is combined with a solid simulation that represents
the cementing material to create an anisotropic composite material. For this
purpose numerous approaches to calculate the dynamic response of rods and
solids as well as their common theoretical background, continuum mechanics,
are reviewed. By utilizing mesh-less solid simulation and scattered rods to
discretize the object, our approach is not limited to a specific shape. Further
by specifying the direction of anisotropy for each particle in the object results
in a particular rod pattern. Uniform anisotropic directions create fibrous ma-
terial like wood while random directions create locally anisotropic materials
like press wood. Modulating the randomness allows to simulate a wide vari-
ety of materials. In addition, specifying the direction of anisotropy is more
intuitive than parametrization of the stress-strain-constitutive model. The
approach extends the recently popularized position based dynamics (PBD)
allowing interactive frame rates at the cost of poor convergence making it
difficult to achieve physically meaningful material parameters.
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Kurzfassung

In der vorliegenden Bachelorarbeit wird ein neuartiger Ansatz zur Simu-
lation transversal isotroper Materialien vorgestellt. Im Gegensatz zu klas-
sischen Ansätzen, die die Anisotropie mit dem Deformations-Spannungs-
Modell beschreiben, ist der vorgestellte Ansatz von der natürlichen Struk-
tur des Holzes motiviert. Eine Stab-Simulation, welche die Fasern im Holz
darstellt, wird mit einer Festkörper-Simulation kombiniert, die das hölzer-
ne Verbindungsmaterial repräsentiert, um ein anisotropes Kompositmaterial
zu bilden. Zu diesem Zweck werden zahlreiche Ansätze zur Berechnung der
Dynamik von Stäben und Festkörpern sowie deren gemeinsamer theoreti-
scher Hintergrund, die Kontinuumsmechanik, betrachtet. Die verwendete
Festkörper-Simulation benötigt keine Verbindungen zwischen den Partikeln,
außerdem werden kurze Stäbe abhängig von der spezifizierten Richtung im
Objekt plaziert. Dies erlaubt eine Diskretisierung des Objekts, die nicht auf
eine bestimmte Form beschränkt ist. Durch die Definition der Richtung der
Anisotropie wird eine bestimmte Verteilung der Stäbe im Objekt erzeugt.
Homogene anisotrope Richtungen erzeugen faserige Materialien wie Holz,
während inhomogene Richtungen Materialien wie Pressholz erzeugen. Da-
durch wird die Simulation von einer Vielzahl von Materialien möglich. Ein
weiterer Vorteil ist, dass die Angabe der Richtung der Anisotropie intuiti-
ver anwendbar ist als die Parametrisierung bei Verwendung des Spannungs-
Dehnungs-Modells. Der Ansatz basiert auf der kürzlich vorgestellten Metho-
de „position based dynamics“(PBD). Bei dieser können interaktive Bildra-
ten erreicht werden, jedoch auf Kosten der Konvergenz und somit auch auf
Kosten der physikalischen Materialparameter.
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Index of Notation

𝑝 Particle
x Position
v Velocity
a Acceleration
x̃ Rest/Material Position
𝑚 Mass
𝐶 Constraints
n Time-step variable
𝜌 Density
F Deformation gradient with re-

spect to x̃
𝜀 Strain
𝜈 Strainrate
𝜎 Stress
W Energy Potentials
𝑓 Forces
Ω Darbaux Vector

Time-steps and Exponents: In context of simulation sometimes one
needs to differentiate between information of the current time step n and
next or previous one. Here we will overload the exponent to reference the
timestep as well as the usual exponent. If the timestep variable n is used then
the exponents references a position in time for example xn+1

𝑖 would reference
the position of the 𝑖-th particle at the next time step. The rest-configuration
is sometimes denoted as x0 however 𝑛 = 0 does not necessarily define the
rest-configuration. Instead parameters in rest configuration are denoted by
·̃, e.g. x̃.

Domain and indices: Scalar values are denoted by lower-case italic let-
ters, 𝑥, 𝑦, 𝑧, whereas vector are denoted by bold lower-case letters x, x̃ and
second order or higher tensors by bold and upper-case letters F. Unless
stated otherwise indices on scalars denote correspondence to a particle, e.g.

vi



Index of Notation vii

Particle

Vertices
 

Vertices
 

Vertices
 

Figure 1: Each triangular elements has three vertices, each vertex is asso-
ciated with a particle.

𝑥𝑖 might be the the x component of the 𝑖-th particle position. For vec-
tors indices can denote either a particle correspondence or reference to their
component 𝑥, 𝑦, 𝑧 scalar component. The difference should be apparent from
the the context as the component index is bound by the dimension of the
vector where as the particle correspondence is bound by the, possibly infi-
nite, number of particles. Finally single indices on matrices denote particle
associations where as double indices denote a specific component of the ma-
trix.

Discrete Entitles: Particles or points are abstract entities that associate
a positions within the region of an object with other properties of the object
like mass, temperature or even volumetric properties like pressure. In theory
every object contains infinitely many particles or a continuum of particles
however in practice we can only work with a finite amount. To approximate
the continuum the object is decomposed into a set of simple shape1 called
elements. Each elements has a set of vertices, fig. 1, which can store element
specific properties and but still reference to the corresponding particle. This
way particle specific properties only need to be stored once and we are still
able to store vertex-specific properties. A set of connected elements is called
a mesh. Further we will use the same variables to denote continuous and
discrete properties rather than introducing several variable for the same
property in the discrete and continuous setting. As such x can either denote
the continuous set of positions or a vector of a finite set of discrete positions
[x𝑇

1 , . . . , x𝑇
𝑁 ]𝑇 .

1In one dimension possible elements are linear-lines, NURB-curvers or bezier-curver.
For two dimensions triangle, quads or regular polygons are common and in three-
dimensions their higher-order counterparts tetrahedral, cubes or platonic solids.



Index of Notation viii

Eigenvalues and Eigenvectors: The 𝑖-th eigenvalue of a matrix 𝐴 is
denoted by 𝜆𝑖(𝐴). If there is no index then 𝜆(𝐴) denotes a diagonal matrix 𝐵
with 𝐵𝑖𝑖 = 𝜆𝑖 and 0 otherwise. The same notation is adopted for eigenvectors
here 𝜚𝑖(𝐴) denotes the 𝑖-th eigenvector of 𝐴 and 𝜚(𝐴) a matrix where the
𝑖-th column is the eigenvector 𝜚𝑖(𝐴). It follows that the eigendecomposition
of a matrix can then be written as 𝜚(𝐴)𝜆(𝐴)𝜚(𝐴)−1 or if the context allows
it simply as 𝜚𝜆𝜚−1.



Chapter 1

Introduction

Mechanical simulations are essential to many industries as it allows to eval-
uate a products physical behavior, when subjected to load. The aerodynam-
ics of an airplane-wing under extreme weather conditions, the stresses of
heavy-duty trucks on a bridge or even the interaction of veins with surgical
equipment need to be tested. Computer aided simulation allows to perform
these tests digitally and thus, safely where conventional methods might fail
due to moral, financial and physical constraints. Ultimately the ability to
compute the behavior of complex mechanical systems is a corner stone of
the rate of innovation and technological advances we had, and continue to
experience. In order to be of any use in the engineering context the deviation
of the simulation from an actual response must be constraint by a small and
well understood numerical error. Much effort has been spent to minimize
this error by sacrificing run-time-performance.

The visualization and simulation within the entertainment industry has al-
most the opposite requirements. Here visual plausibility is sufficiently ac-
curate and instead, applications are optimized for run-time efficiency and
ease of use. Run-time efficiency reduces the amount of hardware, power and,
of course, time needed to complete the simulation. This also enables faster
design iterations thus, reducing labor cost. To make the system usable for
non-domain experts such as visual effects artists the parameter complexity
that comes with a true physical model needs to be reduced to a manageable,
ideally intuitive set of parameters. Another key distinction from other indus-
tries is the need for a unified simulation framework, i.e. a single framework
that can simulate rods, sheets, solids, fluids and the interactions between
them. While it is feasible or even reasonable for a cosmetic manufacturer to
employ a simulation framework that only models hair(rods) and a separate
framework to only simulate skin(sheets), it is not for content creation as the
interaction between any kind of material is frequently needed. These alterna-
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1. Introduction 2

tive criteria are distinct enough to lead to a large body of novel methods yet
similar enough that advancement in either field can potentially contribute
to the other. Interactive-simulation is due to its real-time constraint a little
further removed from the engineering methods than the offline-simulations
used in feature-films.

It is apparent that all industries would benefit from the time and cost sav-
ings of better run-time efficiency. As such some of the advancements and
best practices that emerged from this alternative set of criterias have been
implemented into major production pipelines. For example Michels (2014)
and Michels et al. (2014, 2015) proposed stiff integrators and partial ana-
lytic solutions for the elastic Kirchhoff-model which was adapted by P&G1

for their hair-simulation. These new methods reduced simulation time from
more than a week down to a few minutes. In computational fluid dynamics
(CFD) software packages such as Ansys, now provide a GPU-acceleration
that allows the technical designer to interactively get a rough approxima-
tion of their desired quantities before starting the more accurate and costly
simulations. In this thesis we will focus on a specific aspect of interactive sim-
ulation that has gotten little coverage so far: the fracturing of anisotrophic
materials.

1.1 Anisotopic Fracture

The elastic response of isotropic materials is independent of the direction
external forces (or loads) are applied. For anisotropic material the direction
of the force matters. Perhaps the most obvious example of such a material
is wood. It can easily be split by an axe if chucked along the grain, however,
it takes significantly more effort (force) to split it orthogonal to the fibre
direction. Further wood makes it very clear as to why it has these anisotropic
properties. The fiber structure within wood can be seen just by looking at
it. As discribed in Dinwoodie (2000) at microscopic level one can see that
wood is mostly made up of either 2 or 4 cell types for soft-and hardwood
respectively. The fibre cells are the main supporting structure for hardwood,
1-2mm in length and have a length to diameter aspect ratio of roughly 1:100.
In softwoods the tracheides cells are responsible for the supportive structure
with a length of 2-4 mm. The strength of timber is significantly determined
by the relative amount of supportive cells. Further different specimen can
vary vastly in density from 120 kg/m3 to 1200 kg/m3. Hemicelluloses and
lignin are the cementing materials that bind the structural components of the
timber together and as such contribute to its strength and stiffness.

1Procter & Gamble
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In most simulation methods isotropic and anisotropic materials only differ
in the way the stress is computed from strain. The two Lamé constants 𝜆, 𝜇
describe the stiffness and shear properties of isotropic materials, however for
anisotropic materials 21 parameters are needed2. Not only is it an unwieldy
number of parameters for both user and developer, they are also a lot less
intuitive than the Lamé constants. The parameter 𝜇 for example describes
the material resistance to shear-deformations. The key insight gained from
the short timber discussion is that the combination of two isotropic materials
can yield an anisotropic one. For our simulation we combine a rod framework,
that represents the fibre-cells, and a solid simulation, that represents the
cementing components of timber.

There is a wide range of applications for anisotropic materials. We already
explained that most plants are anisotropic in nature. The muscle-tissue of
most animals is also fibrous and thus, anisotrophic. For example to analyze
the stresses within the heart-muscle one needs to employ an anisotropic
material model and even change the direction of anisotrophy throughout the
object. Our goal is to provide an anisotrophic material model for all these
applications that allows an approximation of actual anisotrophic behavior
with interactive frame-rates.

1.2 Structure of the Thesis

The majority of the thesis will cover and summarize previous works in the
field of interactive dynamics and fracture. In chapter 2 a very short introduc-
tion into continuum mechanics is presented that covers the major theoretical
aspects that many of the dynamic frameworks rely on. Based on these con-
cepts a set of abstract building blocks is derived which are at least in part
present in any dynamic model. Chapter 3 presents different methods to com-
pute the elastic response of an object and special cases for rods, sheets and
solids. Due to the limited scope of this thesis some methods are covered only
very briefly others not at all. Instead large parts of the chapter are devoted
to Position Based Dynamics(PBD) as our implementation is based on it.
Chapter 4 then deals with the fracturing of objects. Therefore we discuss
plastic deformations and fracture criteria and how these are realized in the
different methods from previous chapter. The review of previous work is
then concluded by a detailed description of the fracture process for oriented
particles.

2Let 𝜀 ∈ R3×3 then the rank four tensor 𝐶 ∈ R3×3×3×3 connects the strain 𝜀 to the
stress 𝜎. Partly due to symmetry we actually only need 21 out of the 81 components to
compute the remaining 60.
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In chapter 5 we move on to our own method and discuss the different choices
of rod-configuration as well as the choice of strain-measurement and it’s
correction. These choices are then compared to the approach that is closest
to our own, Sutherland (2012). Chapter 6 discusses implementation spe-
cific details. As our models requires information that is not present in the
usual object-formats the loading and model-preparation is shortly discussed.
The current implementation of rod and particle placements employs sim-
ple greedy algorithms and as such improvements for group-clustering and
rod-placements are suggested. The current capabilities and limits of the
rendering are and not yet implemented meshing approach is schematically
presented. At last chapter 7 discusses the successes and shortcomings of the
presented method. The potentially most detrimental shortcomings, rate of
convergence and level of detail, is discussed in more detail and suggestions
which need to be investigated in future work are presented.



Chapter 2

Mechanical Simulations

Mechanics is the study of motion (kinematics), of forces which result in a
change of motion (dynamics) and the interaction between forces such as the
collision of different objects and the resulting deformations. This chapter
gives a quick overview of the most essential aspects of continuum mechan-
ics needed for interactive simulations. This chapter is based on the more
complete and rigorous discussion in Y. Fung (1993), Abeyaratne (2012) and
freely accessible resource provided by McGinty (2018).

2.1 Continuum Mechanics

The concept of a continuum is well understood from number sets such as
the real or complex numbers. Between any two real numbers there is an-
other real number in between them thus, between any two real numbers
there are infinity many real numbers. Intuitively we can view both time
and three-dimensional space around us as continuous. While the assump-
tion of continuous matter obviously fails at atomic scale it is sufficient for
a large range of engineering applications and even more so for computer
graphics.

Since we assume space to be continuous we can describe its state by an infi-
nite set of particles at every location in space. Particle might be associated
with additional parameters such as mass, temperature or even extensive
properties such as density. Also every natural object is bound by a particu-
lar region ℛ in space. This implies that we can describe the state of natural
objects with the particles within that region ℛ. The subset of particles is
called body ℬ and is an abstract representation of the real objects. This
abstraction allows to apply mathematical operations and concepts to real
objects. For example, viewing matter as a continuous distribution in space

5



2. Mechanical Simulations 6

allows for a one-to-one correspondence between the particles of the body
𝑝 ∈ ℬ and positions within the region x ∈ ℛS:

x = 𝒳 (𝑝) (2.1)

ℛ = 𝒳 (ℬ) (2.2)

Other physical quantities for example temperature correspond directly to a
particle and thus, a similar mapping can be defined for any such quantity
𝜃:

𝜃 = 𝜃*(𝑝) (2.3)

for 𝑝 ∈ ℬ. While this definition is correct a particle is an abstract entity.
As such it is not particularly convenient to reference to a particle to be
evaluated. Instead, it is more intuitive to query the objects properties at a
specific position in space. Thanks to the one-to-one correspondence this can
be easily achieved:

𝜃 = 𝜃(x) def= 𝜃*(𝒳−1(x)) (2.4)

Extensive properties such as density are not directly associated with a par-
ticle but rather a region in the body. However, under the assumption of
continuous matter the mapping can be extended to include such properties.
To exemplify this point let us consider the concept of density more closely.
If mass 𝑚𝑛 is a measurement for the amount of matter in a corresponding
region 𝑉𝑛 then density 𝜌 at a point x ∈ ℛ can be defined as the ratio of
mass per volume:

𝜌(x) = lim
𝑛→∞
𝑉𝑛→0

𝑚𝑛

𝑉𝑛
(2.5)

where the volume 𝑉𝑛 is centered around x. With the inverse mapping 𝒳−1

the extensive properties can now be mapped to a specific particle.

The most important implication of the continuity assumption is the ability
to use rigorously defined mathematical tools such as differentiation and in-
tegration. As such continuity is the very foundation of classical mechanics
which describes the behavior of natural objects such as rigid-bodies (New-
ton), fluids (Navier-Stokes) or electromagnetism (Maxwell) with differential
equations.

2.1.1 Reference Configuration and Deformation

The abstraction of natural objects into a mathematical description of a
body enables us to describe a single state or configuration of said objects.
In order to capture changes in between different configurations, such as
movements or deformations, time needs to be considered. To capture these
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changes the previous body-to-space-mapping needs to be extended by a time
parameter:

x = 𝒳 (𝑝, 𝑡) (2.6)

In eq. (2.4) we changed the parameter of the function to position as it
gives a more intuitive mean of referencing particles. By introducing time to
this mapping it is no longer clear how to label a particular particle as its
position is subject to change with respect to time. However, as long as the
time parameter is fixed the mapping is unique. By choosing a specific time or
configuration we can reference a particular particle and use its index to track
it in all configurations. This specific configuration is called material or rest
configuration and we use a material/rest position x̃ to reference particles
x̃ = 𝒳𝑟𝑒𝑓 (𝑝) def= 𝒳 (𝑝, 𝑡𝑟𝑒𝑓 ) in it. This allows to compute the position, or
any other quantity, at the current time 𝑡 based on the position in the rest
configuration:

x = 𝒟(x̃, 𝑡) def= 𝒳 (𝒳−1
𝑟𝑒𝑓 (x̃), 𝑡) (2.7)

This mapping allows us to study geometric changes between configurations
or, in other words, deformations of the body with respect to this reference
configuration. Thus x is the deformation of x̃ and 𝒟 is the deformation
mapping.

2.1.2 Strain and Stress

In order to analyze the behavior of a material, the rigid body translation and
rotation needs to be removed from the deformation function. This leaves only
deformations that prompt a response from the material. The relative mea-
sure of these non-rigid-body-deformations is called strain. Strain describes
how the extend of the object has changed compared to its rest extend and
as such is a unit-less measurement. This also means that strain is indepen-
dent of the particular extend of an object, thus, it can be used to define the
general behavior of all materials. In order to derive strain we first calculate
the deformation gradient:

F = 𝜕x𝑖

𝜕x̃𝑗
=

⎡⎢⎢⎣
𝜕x1
𝜕x̃1

𝜕x1
𝜕x̃2

𝜕x1
𝜕x̃3

𝜕x2
𝜕x̃1

𝜕x2
𝜕x̃2

𝜕x2
𝜕x̃3

𝜕x3
𝜕x̃1

𝜕x3
𝜕x̃2

𝜕x3
𝜕x̃3

⎤⎥⎥⎦ (2.8)

Alternatively, the deformation gradient can be expressed in terms of dis-
placement k = x− x̃ :

F = 𝜕

𝜕x̃(x̃ + k) = 𝜕x̃
𝜕x̃ + 𝜕k

𝜕x̃ = I + 𝜕k
𝜕x̃ (2.9)
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Notice that the deformation gradient F is invariant with respect to rigid
body translations as k stays constant under such translations. If only rigid
body translations are applied to the body, the deformation gradient is the
identity matrix, F = I. Unfortunately, rigid-body rotations are still present
in the deformation gradient. There are multiple ways to decompose this
matrix to remove its rotational components such as QR-decomposition. Here
we will present the polar decomposition as it is also used in the approaches
described in sections 3.3 and 4.3.

Polar Decomposition

The transformation gradient contains some rotation R and the non-rigid
body transformation U that we are interested in. Thus, we should be able
to decompose the deformation gradient into a multiplication of the two,
F = RU. By definition1 the multiplication of a matrix with it’s transpose
yields a symmetric matrix.

F𝑇 F = (RU)𝑇 (RU) = U𝑇 R𝑇 RU (2.10)

As the matrix R is assumed to be a rotation matrix it has to be orthogonal
and skew-symmetric. The transpose of an orthogonal matrix is equal to its
inverse thus R𝑇 R = I. Further any matrix can be decomposed excatly into
a symmetric and a skew-symmetric part. Since the rotation is known to be
skew-symmetric, U has to be symmetric.2 In other words this leaves us with
the square U𝑇 U = U2 of the matrix U that we are interested in. One way
to take a square root from a matrix is to diagonolize it using its eigenwert
decomposition.

(U2) = VDV−1 (2.11)

where D is a diagonal matrix containing the eigenvalues of U and the matrix
V contains the corresponding eigenvectors. Now the square root of D can
be taken by the square root of its separate entries to obtain U:

U = VD
1
2 V−1 (2.12)

This leaves us with the non-rigid body transformation U. The corresponding
rotation can now easily be calculated by R = FU−1.

1A matrix is defined to be symmetric if 𝐴 = 𝐴𝑇 . Thus, the multiplication of any matrix
with its transpose yields a symmetric matrix (𝐴𝑇 𝐴)𝑇 = 𝐴𝑇 (𝐴𝑇 )𝑇 = 𝐴𝑇 𝐴 = 𝑆

2A matrix is symmetric if A = A𝑇 and anti-symmetric if A = −A𝑇 . Thus, any matrix
can be decomposed into a symmetric and an skew-symmetric matrix by:

A = 1
2(A + A𝑇 ) + 1

2(A − A𝑇 )
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Strain

Finally, we can define strain as a deviation from pure rigid body transfor-
mation in which case 𝑈 would be 𝐼.

𝜀 = U− I (2.13)

Since 𝑈 is symmetric 𝜀 is implied to be symmetric as well. While this defini-
tion is quite useful it is computationally expensive, thus, other measurements
of strain are commonly used, such as Almansi-strain, Cauchy-strain, Greens-
strain or logarithmic strain. The strain-measure used most frequently in this
thesis is the Cauchy-Green strain defined as:

𝜀𝐺 = 1
2(F𝑇 F)− I (2.14)

Notice that the rigid-body rotations have already been removed as in equa-
tion 2.10, however, this definition refrains from calculating the actual tensor
U. By not taking the square root from the deformation gradient quadratic
terms are introduced into the solution. Thus, this definition can only be used
for small to modest amounts of deformation as its error is quadratically cor-
related with the amount of strain. Most simulation require small time-steps
for the integration anyway and as such this is a popular approach.

Stress

The strain that was just calculated provides the raw information to com-
pute the internal elastic and dampening forces3. However, it is computed
independent of material properties. The stress measurement then correlates
the strain to elastic and shear responses of a specific material. The total
internal stress 𝜎 is simply the sum of the elastic stress due to strain 𝜀 and
stress due to strain rate 𝜈:

𝜎 = 𝜎(𝜀) + 𝜎(𝜈) (2.15)

The most general linear constitutive model relates the strain 𝜀 to the stress
with 81 elastic material properties stored in the rank four tensor C :

𝜎
(𝜀)
𝑖𝑗 =

3∑︁
𝑘=1

3∑︁
𝑙=1

C𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 (2.16)

Obviously, for most applications this is an unpractical way to specify the
material properties. By constraining ourself to isotropic materials the pa-
rameters can be reduced to only two independent variables 𝜆 and 𝜇 called

3For now a pure elastic material response is assumed, plastic deformation is covered in
chapter 4
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the Lamé coefficients. The first parameter 𝜆 describes the elasticity of the
material or in the context of fluids the viscosity. The second parameter 𝜇 de-
scribes the materials response to shear strain. Many other elastic and shear
moduli exist some notable examples include Young’s modulus for elasticity,
Possion’s ratios or the bulk modulus. Any two of these moduli fully describe
an isotropic material properties and, thus, can be converted to any other
modulus representation.

To calculate the viscous stress 𝜎(𝜈) we first need to differentiate the Greens-
strain with respect to 𝑡. Since x̃ is independent of 𝑡 differentiation is straight
forward:

Ḟ = d
d𝑡

(︂
𝜕x𝑖

𝜕x̃𝑗

)︂
= 𝜕ẋ𝑖

𝜕x̃𝑗
(2.17)

Which can then be used to differentiate Greens-strain.

𝜈𝑖𝑗 = d
d𝑡

(︂
1
2
(︀
F𝑇 F

)︀
− I

)︂
= 1

2
(︀
FḞ𝑇 + ḞF𝑇

)︀
(2.18)

Which in turn can then be used to define the viscous stress with a four rank
tensor D containing the dampening coefficients.

𝜎
(𝜈)
𝑖𝑗 =

3∑︁
𝑘=1

3∑︁
𝑙=1

C𝑖𝑗𝑘𝑙 𝜈𝑖𝑗 (2.19)

Finally, we can apply Hooke’s law which linearly corresponds elastic strain
and stress to the elastic energy potentials 𝜂 and the strain rate and viscous
strain to a dampening potential 𝜅 at any point in the material.

𝜂 = 1
2

3∑︁
𝑖=1

3∑︁
𝑗=1

𝜎
(𝜀)
𝑖𝑗 𝜀𝑖𝑗 (2.20)

𝜅 = 1
2

3∑︁
𝑖=1

3∑︁
𝑗=1

𝜎
(𝜈
𝑖𝑗 𝜈𝑖𝑗 (2.21)

These quantities can be integrated over the volume of the body to obtain
the objects elastic and dampening potentials, respectively. By subtracting
the applied external potentials from these body potential we get the total
potential energy which needs to be minimized to find the objects equilibrium.
Alternatively, we can use the stress to compute the internal force at any
particular location. The force acting on a plane perpendicular to a unit
normal n̂ in an infinitesimal volume centered at a specific point is defined
as:

f = 𝜎 n̂ (2.22)

where f is the force per unit area.
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Figure 2.1: Summary of the connection between the different quantities
discussed in this chapter.

For some materials, like fluids with low viscosity, the change in geometry is
not needed to describe its behavior. It is independent of an initial configu-
ration. However, most solid models require the strain or stress quantities we
just defined.

2.2 Simulation Framework

Continuity is a nice theoretical tool, however, to perform computer aided
simulation the notion of continuity needs to be abandoned due to limited
storage and computational resources. This implies that both the space sam-
pling i.e. the particle count and the time-step size between configurations
needs to be finite. There is a multitude of numerical methods for solving
PDEs. Some of them, such as smoothed particle hydrodynamics (SPH), op-
erate directly and only on the particles of the object. Other, such as finite
element method (FEM), decompose the region of the object into a mesh
of primitive shapes called elements. The continuous function is approxi-
mated by interpolating the particle values across each element and as such
across the object in a piece-wise continuous manner. Independent of the ac-
tual method, and weather it is mesh-less or not, it will always provide an
approximation to the continuous function based on the values of discrete
particles. This also allows to differentiate or integrate the function which in
turn allows us to solve the PDE, at least locally. To summarize, the values
at any position in the region of the object can be approximated from the
discrete particle by a numerical methods.

Before we can discuss a simulation and utilize this abstract numerical ap-
proximation method the initial configuration needs to be specified. For this
a finite amount of particles is scattered within the region of the object. Each
particle is associated with a number of properties and usually includes at
least position x, velocity v, acceleration a, rest-position x̃ and mass 𝑚. For
every particle the property values need to be initialized. How the particles
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Figure 2.2: Abstract building block for a physical simulation.

are scattered depends on the particular numerical method of choice. For
FEM in three dimension tetrahedral meshes are popular leading to a reg-
ular grid structure for particle placement. The SPH method on the other
hand requires uniformly scattered particles to cover the region as evenly as
possible and thus, reduce the expected error. As the particles are usually
not directly visible in the finial application grid structure can be used here
as well. Often the initial configuration is also used as the rest-configuration
but it could also be specified independently.

In most scenarios the user also wants to specify a container with which
the object can collide, dissolve on impact or otherwise interact with, these
are called boundary conditions. Finally external forces such as gravity, wind
or other loads should be defined as without them the elastic response will
always be zero. With an abstract idea of all aspects of a simulation in place
fig. 2.2 outlines the execution of a single simulation step. It should be noted
that particular methods may rearrange, skip or extend steps to this outline.
None the less these building blocks provide a general high level overview of
the most common components utilized in many simulation systems and as
such provides a good ground for comparison. In the following the five steps
of fig. 2.2 are discussed:

First: The defined external forces are applied to all applicable particles.
Some forces like gravity affect all particles while other forces like point loads
may only affect a single particle. Along with each particles mass the ac-
celeration a can be computed according to Newtons second law of motion
𝑓𝑒𝑥𝑡 = 𝑚a. Then these additional external forces are added to possible cor-
rection forces from a previous time-step 𝑓 = 𝑓𝑒𝑥𝑡 + 𝑓𝑖𝑛𝑡.

Second: Either we start with a initial configuration or we have a valid
configuration from the previous time-step. With a previous valid configura-
tion we need to compute the current configuration. Suppose 𝑡 describes the
current point in time for which the quantity in question is still unknown. Un-
fortunately, there is general no function that describes the quantities values
across time 𝑞(𝑡). For example, for computer-graphics one is only interested
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in the next positions of the particle, however, there is no function x(𝑡) that
returns a field of positions for the particles at that point in time. However,
the current value of 𝑞(𝑡) can be described in terms of its derivative:

𝜕𝑞

𝜕𝑡
= 𝑓(𝑞) (2.23)

Which can then be used to get the actual value of the quantity at any point in
time without the actual function 𝑞(𝑡) by utilizing the previous values.

𝑞(𝑡) =
∫︁ 𝑡

0
𝑓(𝑞(𝜏))d𝜏 (2.24)

Still we are dealing with a discrete position and also the time domain has
to be discretized. Thus, in our simulation we start with a time-step n = 0
where n ∈ N and define our integration methods such that they approximate
the integral as we go from time-step n to n + 1. One common and simple
numerical integration method is the explicit Euler:

xn+1 = xn + Δ𝑡𝑓(𝑞n) (2.25)

where 𝑓(𝑞n) describes the numerical differentiation with respect to 𝑡. This
allows us to compute the position at the next time-step xn+1. There are
many other integration methods, many of which trade simplicity and com-
putational expense for higher accuracy or better stability. Another popular
approach for interactive applications is the leap-frog integration which in-
terleaves update and derivative update steps. For higher accuracy implicit
integration methods are preferred, these first compute the derivative at the
current point in time and then calculate the current value based on it.

Third: Based on the new positions xn+1 the chosen PDE solver can
compute the current deformation function, locally approximate strain and
stress and finally compute the potential energy at every particle. Chapter 3
covers different methods for this step in more detail.

Forth: The objects equilibrium or ideal particle position has been reached
when the total potential energy function is minimized.

II = W(x𝑒𝑞)−Wext (2.26)

One way to solve for x𝑒𝑞 is to assume a system of only conservative forces
and as such the total potential energy is 0. Equating body and external
potentials create a system of equation that can be solved by linearizing with
Taylor-expansion and then utilize widely available BLAS libraries to solve
the system.
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Fith: Solving the equation-system gives us a corrected position xn+1 to
which we can apply the boundary conditions. This can either be done by
simply projecting the position into a valid region and adjusting the velocity
or by introducing penalty forces which will be applied at the beginning of the
next simulation step. Finally, we increment the time-step variable n and can
start the calculation of the next time-step by going back to step one.



Chapter 3

Methods of Interactive
Simulation

A variety of models have been used to simulate the elastic behavior of
objects. While most methods still reference back to continuum mechanics
many of them significantly reduce the required computation by ignoring
some physically relevant aspects. For example mass-spring system, as the
name suggests, connect particles with spring forces. This make it simple to
implement, as only a single force type has be be realized and and no ad-
ditional quantities such as strain, stress or density need to be computed.
However mass-spring-system do not treat the space as a continuum, as such
no physical meaning-full material parameters can be derived. This makes
it very difficult to parameterize such a system to correspond to a certain
type of material as only the spring-stiffness between each particle-pair can
be adjusted. Models that treat objects as a continuum benefit from physical
meaningful and thus more intuitive parametrization. This chapter presents
Finite Element method, Position-Based-Dynamics and Shape-Matching. An-
other common method SPH is not discussed in this chapter, however very
briefly referenced to in section 6.1.

3.1 Finite Elements

The finite element method (FEM) requires the object in question to be de-
composed into a connected mesh of elements. Potential elements in three di-
mensions are tetrahedrons, cubes or other platonic solids. For two dimension
triangles, rectangles and other regular polygons respectively. This allows to
interpolate the values of the mesh particles within each element. As such we
have a continuous set of value within each element. Since the object is rep-

15
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resented as a mesh of the elements all particle quantities can be interpolated
across the object in a piece wise continuous matter.

While the PDE can not directly be solved for the whole region of the object
the simplicity of the chosen elements allows for analytical integration and
thus the PDEs can be solved for each element. First the deformation is
interpolated across the element allowing us to compute the strain. Applying
the material properties to the constitutive model the stress is computed.
Integrating the stress of the element yields the potential energy for the
element. To get the physical behavior of the whole object the vertex solutions
are combined at their corresponding particle under a continuity condition.
This allows us to define the elastic potential density per element as:

𝜂element = 1
2

∫︁
𝑉

𝜂d𝑉 (3.1)

where 𝜂 is defined as in eq. (2.20). In order to minimize eq. (2.26) we still
need the external forces that are applied to a specific element. Having already
defined the displacement 𝑒 this can easily be expressed as:

W𝑒𝑥𝑡 =
∫︁

𝑉
𝑒(x)𝑓𝑒𝑥𝑡d𝑉 (3.2)

where 𝑓 denote the sum of all external forces acting on the particles corre-
sponding to the elements vertices. Assuming that we only consider conserva-
tive forces in a closed system gives us the equation for total potential energy
eq. (2.26), for each element. In order to minimize this equation its derivative
has to be zero. For 𝑀 elements and 𝑁 particles we get an 𝑀 × 𝑁 sparse
system of equations that needs to be solved for the position differential at
the particle positions. Each equation depends only on the discrete deformed
vertex positions.

3.1.1 Real Time FEM

The FEM approach is used extensively in the engineering community and
also in the computer graphics community even for interactive simulation of
solids and fractures, Matthias Müller et al. (2001) and O’brien et al. (2002,
1999). In order to achieve interactive frame rates most of these methods em-
ploy a few accuracy-speed trade offs. First they usually rely on linear shape
functions of either of triangle (2D) or tetrahedral (3D) elements as these
result in a constant deformation gradient across the element, as explained
in section 3.2.3 page 22. This eliminates the need for numerical integration
in eq. (3.1), as the volume of the element can be computed analytically
and 𝜂 is constant. This is precisely the reason why engineering applications
rely on higher order interpolation or other element types as this reduces
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the accuracy of the results in an inconsistent manner. In order to maintain
visual fidelity there are separate meshes for shading and physical simula-
tions. For example, the convex hull of the object can be used to generate
the tetrahedral mesh.

In recent years there have been a few notable advances in adapting FEM
to allow for visually plausible results at interactive frame rates. The first
papers on interactive fracture by Matthias Müller et al. (2001) and O’brien
et al. (2002, 1999) are also based on FEM. The thesis Flores (2015) gives a
more detailed overview of interactive use of FEM. Ngan et al. (2008) apply
stiffness-warped small-strain linear elastic models to nonlinear elements and
present an efficient implementation.

3.2 Position Based Dynamics

Position based dynamics (PBD) started as a non-physical approach which
has found wide spread adoption1 due its simplicity and stability. Instead of
computing and integrating forces to correct the position, PBD computes the
position corrections directly. This is achieved by constraining particle posi-
tions with respect to each other and then solving the system of constraints.
It was originally introduced by Matthias Müller et al. (2007), then in the
siggraph course notes on interactive dynamics Matthias Müller et al. (2008)
a whole chapter was devoted to it and finally the survey paper Bender et al.
(2014a), Bender et al. (2017) are entirely devoted to PBD and summarize
the numerous extensions already published for this method. As these publi-
cations are either entirely or partially devoted to PBD some of the equations
are identical across the different publications and will also be presented in
this thesis.

3.2.1 Algorithm Overview

The object that is to be simulated is represented by a set of 𝑁 particles and
a set of 𝑀 constraints. These constraints describe the behavior of the object
and in full compliance with them the object would be completely stiff. By
partial compliance, either through a stiffness-parameter for each constraint
or by stopping the iterative solver before it converged, larger deformations
that mimic elastic response can be created. The calculation of a time-step
starts out very familiar to the pipeline in the section 2.2. Initially, all forces
are summed and integrated to compute the velocity of the current time step.

1Implemented has been implemented in the open-source physics-engine bullet as well
as in Nvidia PhysiX and Nvidia Flex.
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Figure 3.1: Overview of the PBD algorithm. For the time-step n the next
position is predicted based on the current velocity (grey arrow). The predic-
tion is corrected by the constraint solver (red arrows). Then the velocity is
updated to account for the solver correction (black arrow).

Since the elastic response is not represented as a force the additional veloc-
ity is computed entirely from external forces 𝑓ext, line 2. The velocity can
then be integrated to yield position. However, as only external forces where
considered during integration the result does not represent the actual next
position but rather a starting point which needs to be corrected to comply
with the constraints. The particle position at the beginning of the time-step
will be needed later so the computed position will be assigned to an addi-
tional property, the predicted position b, line 3. Based on the prediction a
collision detection dynamically generates a set of additional constraints that
resolve these collisions, line 4. Then the solver, line 6, takes the set of pre-
dicted positions and projects them onto the individual constraint manifolds
sequentially. The solver will be discussed in detail in the next section, for now
we just assume that it has corrected the predicted positions to comply with
the constraint set. Figure 3.1 depicts the process discussed so far. The grey
dotted line describes the sum of the velocity of the previous time step and the
additional velocity from the external forces. The red arrows describe the it-
erative correction from the constraint projection. The velocity will be used in
the next time-step to compute the predicted position. However, the grey-line
(velocity) does not yet account for the correction made by the solver. Since
the position from the beginning of the time-step is still available as x this
is easily rectified by finite difference approximation, line 10. This yields the
actual velocity, black arrow. Finally, the predicted position can be assigned
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to the actual position, line 11, and then the next time-step can be computed.
Algorithm 1: Position based dynamics
1 Time integration with symplectic-Euler
2 forall particles 𝑖 do v𝑖 ← v𝑖 + Δ𝑡𝑚𝑖𝑓ext(x𝑖)
3 forall particles 𝑖 do b𝑖 ← x𝑖 + Δ𝑡v𝑖

4 forall particles 𝑖 do generateCollisionConstraints(x𝑖 → b𝑖)
5 forall solverIteration do
6 projectConstraint(𝐶1, . . . , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙

,b1, . . . , b𝑁 )
7 end
8 Velocity correction
9 forall particles 𝑖 do

10 v𝑖 ← (b𝑖 − x𝑖)/Δ𝑡
11 x𝑖 ← b𝑖

12 end

3.2.2 Constraint System and Solver

The simplest constraint is the distance constraint. A distance constraint
between two particles can be defined as:

𝐶(x1, x2) = |x1 − x2|2 − 𝑑2 = 0 (3.3)

where x1, x2 are the positions of two particles involved in the constraint,
| · | is the euclidean norm and 𝑑 describes the desired distance between the
particles. In order to keep the constraint definition general and independent
of PBD x is used to denote the position. The 𝑀 constraints of the object
yield a non-linear system of equation for the 𝑁 particles. Since we need to
solve for particles positions and every position has three values (𝑥, 𝑦, 𝑧) the
system is over-determined if 𝑀 > 3𝑁 or under determined if 𝑀 < 3𝑁 . While
in theory we could assign every particle exactly three constraints it would
limit the use-cases and flexibility of the approach. However, constraining a
under or over determined system to yield usable results is a difficult task and
is further complicated by inequalities that result from collision constraints.
A simple collision-constraint 𝐶(x1, x2) = |x1 − x2|2 − 𝑑2 ≥ 0 keeps one
particle at least a distance 𝑑 from the other particle.

To make matters worse multiple constraints can create a system where the
solution manifolds of the constraints do not overlap and as such no po-
sition that satisfies all constraints can be found2. Incompatible constraint
sets can result from dynamic constraint creation, as in line 4. Some ap-
proaches even intentionally generate incompatible constraint sets that are

2The simplest case would connect two particle with two distance-constraints, instead
of one, and different parameters 𝑑 for each constraint.
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supposed to complement each other e.g. bending and distance constraints.
The numerical solver has to be able to return plausible approximation in all
these conditions. PBD implementations usually use a Gauss-Seidel method
or one of its derivatives to solve these systems. This approach rapidly re-
turns rough approximations at the cost of poor convergence. Even if it con-
vergences it usually takes a lot of iterations even for objects of moderate
complexity.

We are going to derive the solver for a general constraint definition. This al-
lows us to constraint the system of equations once for the general case which
will then hold true for any particular constraint derived from the general
one. Let x be the concatenation of all particle positions3 x = [x𝑇

1 , . . . , x𝑇
𝑁 ]𝑇

then all particle positions can be passed to the general constraint 𝐶(x) so
that each particular constraint can choose which particle it actually oper-
ates on. The distance constraint, for example, would only reference to two
out of the 𝑁 positions. Additional constraint types can have an arbitrary
amount of parameters without changing the following uniform constraint
definition:

𝐶1(x) ⪰ 0
. . .

𝐶𝑀 (x) ⪰ 0
(3.4)

where ⪰ denotes either = or ≥ depending on the particular constraint. The
process starts by taking the current position as a guess for the solution of the
system. Using Taylor-Expansion on each constraint individually linearlizes
it with respect to its current neighborhood:

𝐶(x + Δx) = 𝐶(x) +∇𝐶(x)Δx +𝒪(|Δx|2) (3.5)

where ∇𝐶(x) is the derivative with respect to the 𝑁 components of x.
Instead of computing a global solution we will solve every constraint in-
dividually. Each constraint will be solved for Δx which describes the cor-
rection needed to translate the current position such that the constraint
is satisfied. Since every constraint is solved individually there is a single
equation and three unknown scalars in Δx making the system highly under-
determined. As such the system needs to be constraint to a single unique
solution first. A desirable property is to conserve linear and angular mo-
mentum. This is the case if Δx is parallel to ∇𝐶. Applying this parallel
condition reduces the system to a unique solution by Δx = 𝜆M−1∇𝐶𝑇

where M = 𝑑𝑖𝑎𝑔(𝑚1, . . . , 𝑚𝑁 ). The equation with a single scalar unknown
𝜆 is given by:

𝐶(x) + 𝜆M−1∇𝐶𝑇 ⪰ 0 (3.6)
3The actual input in the PBD algorithm is not the actual position but rather the

predicted position.



3. Methods of Interactive Simulation 21

For all particles 𝑗 that are participating in the constraint 𝐶 the correction
for a particular particle 𝑖 is:

Δx𝑖 = 𝐶(x)∑︀
𝑗 𝑤𝑗 |∇𝑥𝑗 𝐶(x)|2⏟  ⏞  

𝜆

𝑤𝑖∇x𝑖𝐶(x)𝑇 (3.7)

Now that every constraint can be solved in isolation their results can be
combined to approximate the global solution. This is achieved by simply
applying the correction of each constraint directly such that subsequent
constraints work with already corrected positions. This is known as the
Gauss-Seidel solver and is summarized in algorithm 2. Since 𝜆 is constant
for a constraint it only needs to be computed once for every constraint,
line 4. Next the corrections for each particle of the current constraint is
calculated, lines 5 to 7 . The correction from one constraint are applied to
the global x so that the next constraint works with the corrected positions,
line 8. Inequalities are handled by a if-condition at the beginning of each
constraint-projection, line 3.

Algorithm 2: Gauss-Seidel Solver
1 forall SolverIterations do
2 forall Constraints 𝑖 ∈ {0, .., 𝑀} do
3 if 𝐶𝑖(x) ≤ 0 then
4 𝜆← 𝐶𝑖(x)∑︀

𝑗 𝑤𝑗 |∇𝑥𝑗 𝐶𝑖(x)|2

5 forall particles 𝑘 of Constraint 𝐶𝑖 do
6 Δx𝑘 ← 𝜆𝑤𝑖∇x𝑖𝐶𝑖(x)𝑇

7 end
8 x← x + Δx
9 end

10 end
11 end

Notice that the correction and the rest of the Gauss-Seidel algorithm are
independent of the chosen time-step making it stable regardless of the time-
step size. This is especially useful for interactive simulation where large time
steps are required to simulate objects behavior in real-time. A drawback of
the local solver is that the stiffness of the object depends on the discretization
and constraint ordering, figs. 3.2a and 3.2b. While the time-step does have
no effect on the correction step itself it does influence how much change the
external force introduces to the system and thus how large the corrections
need to be. Some approaches to improve the convergence are discussed in
section 3.2.6. But arguably the biggest downside is that the algorithm can
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not be parallelized since the results from previous constraint are used to
compute the next Δx.

This can be remedied by making a minor adjustment to the algorithm which
is then called Jacobi-Method, algorithm 3. Instead of using the correction
from previous constraints the correction Δx for each constraint is calculated
based on the x vector at the beginning of the solver iteration, line 7. Since
the summation is commutative4 the inner loop, line 3 can be parallelized
and their individual Δx vectors can then be summed after each solver-
iteration and applied to the actual position vector, line 11. Also notice that
the Jacobi solver converges to a solution independent of constraint ordering,
which differs from the Gauss-Seidel solution in case of mutually exclusive
constraint, fig. 3.2.

Algorithm 3: Jacobi solver
1 forall SolverIterations do
2 Δx← 0
3 forall Constraints 𝑖 ∈ {0, .., 𝑀} do
4 if 𝐶𝑖(x) ≤ 0 then
5 𝜆← 𝐶𝑖(x)∑︀

𝑗 𝑤𝑗 |∇𝑥𝑗 𝐶𝑖(x)|2

6 forall particles 𝑘 of Constraint 𝐶𝑖 do
7 Δx𝑘 ← Δx𝑘 + 𝜆𝑤𝑖∇x𝑖𝐶𝑖(x)𝑇

8 end
9 end

10 end
11 x← x + Δx
12 end

3.2.3 Strain Based Dynamics

Matthias Müller et al. (2014) derived PBD constraints based from contin-
uum mechanics which allows to control stretch and shear deformation in-
dependently. This is achieved by deriving a PBD constraint from strain.
Hence they named this approach strain based dynamics. The measurement
of strain is done as for FEM simulations by decomposing the object into
elements. They use tetrahedrons for three dimensional objects and triangles

4This may not be true for floating-point operations but since the solver itself is rather
inaccurate approximation to the global solution to the system we can assume that the
ordering of the Δx summation is irrelevant.
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Figure 3.2: In case of two mutually exclusive constraint 𝐶1, 𝐶2 the solution
of the Gauss-Seidel method depends on the ordering of the constraints, a,b,
also notice that the algorithm eventually alternates between two positions.
The Jacobi method, c, on the other hand converges to a position where both
constraints are equally satisfied or equally violated, thus, converges to the
same solution independent of constraint ordering.

for two dimensional objects. Thus, we need to decompose the object that we
wish to simulate into a tetrahedral-mesh5.

Now we will derive the deformation-gradient for tetrahedrons and demon-
strate that it is constant across the element for linear interpolation. Let 𝑘
denote vertex 1 to 4 of a single tetrahedron. Then let [𝑢𝑘, 𝑣𝑘, 𝑤𝑘]𝑇 be the po-
sition of the particle corresponding to the vertex 𝑘 in rest configuration and
let [𝑥𝑘, 𝑦𝑘, 𝑧𝑘]𝑇 be position in the current configuration. In order to derive
the deformation gradient for the element we need to interpolate the ver-
tex position across the element. We can then interpolate vertex-values with
the three linear weights 𝑟, 𝑠, 𝑡 in both the rest and current configuration. A
particular set of weights describes the same position in both configurations.
The x-component x1 of the rest-position x̃ can then be linearly interpolated
by:

x̃1 = 𝑟𝑢1 + 𝑠𝑢2 + 𝑡𝑢3 + (1− 𝑟 − 𝑠− 𝑡)𝑢4 (3.8)
where 𝑥𝑘 is the x-component of 𝑘-th vertex. The same set of weights can be
used to compute the corresponding current position:

x1 = 𝑟𝑥1 + 𝑠𝑥2 + 𝑡𝑥3 + (1− 𝑟 − 𝑠− 𝑡)𝑥4 (3.9)

The other two components for both the current and rest-position can be
express equivalently. Now we can apply the definition of the deformation
gradient from eq. (2.8) and rearrange it in terms of the linear interpolation
weights:

F = 𝜕x
𝜕x̃ =

⎡⎢⎣
𝜕x1
𝜕x̃1

𝜕x1
𝜕x̃2

𝜕x1
𝜕x̃3

𝜕x2
𝜕x̃1

𝜕x2
𝜕x̃2

𝜕x2
𝜕x̃3

𝜕x3
𝜕x̃1

𝜕x3
𝜕x̃2

𝜕x3
𝜕x̃3

⎤⎥⎦ =

⎡⎢⎣
𝜕x1
𝜕𝑟

𝜕x1
𝜕𝑠

𝜕x1
𝜕𝑡

𝜕x2
𝜕𝑟

𝜕x2
𝜕𝑠

𝜕x2
𝜕𝑡

𝜕x3
𝜕𝑟

𝜕x3
𝜕𝑠

𝜕x3
𝜕𝑡

⎤⎥⎦
⎡⎢⎣

𝜕x̃1
𝜕𝑟

𝜕x̃1
𝜕𝑠

𝜕x̃1
𝜕𝑡

𝜕x̃2
𝜕𝑟

𝜕x̃2
𝜕𝑠

𝜕x̃2
𝜕𝑡

𝜕x̃3
𝜕𝑟

𝜕x̃3
𝜕𝑠

𝜕x̃3
𝜕𝑡

⎤⎥⎦
−1

(3.10)
5 Open-source software-package like CGAL provide an optimized Delaunay-

triangulation-algorithm which can tetrahedralize a point cloud in 𝒪(𝑛(log 𝑛)).
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Actually computing the partial derivatives results in the deformation gradi-
ent in terms of the four vertices:

F =

⎡⎢⎣𝑥1 − 𝑥4 𝑥2 − 𝑥4 𝑥3 − 𝑥4

𝑦1 − 𝑦4 𝑦2 − 𝑦4 𝑦3 − 𝑦4

𝑧1 − 𝑧4 𝑧2 − 𝑧4 𝑧3 − 𝑧4

⎤⎥⎦
⎡⎢⎣𝑢1 − 𝑢4 𝑢2 − 𝑢4 𝑢3 − 𝑢4

𝑣1 − 𝑣4 𝑣2 − 𝑣4 𝑣3 − 𝑣4

𝑤1 − 𝑤4 𝑤2 − 𝑤4 𝑤3 − 𝑤4

⎤⎥⎦
−1

(3.11)
Note that the deformation gradient 𝐹 is independent of the interpolation
weights 𝑟, 𝑠, 𝑡 and, thus, constant across the element. This is true of linear
interpolation of tetrahedron and triangles. Since the deformation gradient
is constant we can avoid the volume integration of the gradient over the ele-
ments volume and simply multiply by the analytically computable volume.
Having derived the deformation gradient we can compute the greens-strain
as in section 2.1.2. In order to incorporate the strain into the PBD framework
we create a constraint that tries to reduce the strain to zero. Let S = F𝑇 F
then the corresponding stretch an shear constraints are:

𝐶𝑠𝑡𝑟𝑒𝑡𝑐ℎ(x) = S𝑖𝑖 − 1 (3.12)

𝐶𝑠ℎ𝑒𝑎𝑟(x) = S𝑖𝑗 (3.13)

Since the matrix S is symmetric, section 2.1.2, we only need to consider
three shear constraint, for 𝑖 < 𝑗. This leaves us with three stretch and three
shear constraints for each tetrahedral element.

In order to solve them with the position based method the constraints need
to be linearized so that they can be solved in a single step. The stretch
constraint can easily be linearized by taking the square root of the respective
component:

𝐶𝑠𝑡𝑟𝑒𝑡𝑐ℎ(x) =
√︀

S𝑖𝑖 − 1 (3.14)

Finally to decouple the shear deformation from stretch deformation it needs
to be normalized and, thus, made independent of the amount of stretching
applied. Giving us the final shear constraint:

𝐶𝑠ℎ𝑒𝑎𝑟(x) = f𝑖 · f𝑗

|f𝑖|| |f𝑗 |
(3.15)

where f𝑖 is the column vector [F1𝑖, F2𝑖, F3𝑖]𝑇 and f𝑗 = [F1𝑗 , F2𝑗 , F3𝑗 ]𝑇 . These
constraints can now be integrated and simulated into the PBD framework
described above.

Energy Minimization

Bender et al. (2014b) deploy a very similar approach but instead of mini-
mizing the strain tensor they compute the elastic potential energy for every
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element and formulate a constraint to minimize this instead. They also use
the greens-strain and then employ the Saint Venant-Kirchhoff model for
isotropic materials to derive the elastic energy potentials for every element.
While the Saint Venant-Kirchhoff model faithfully captures material proper-
ties the actually simulated materials may significantly differ from expected
behavior due to the slow convergence of the Gauss-Seidel solver. Further
their method also supports plastic deformation by splitting the strain into a
plastic and elastic component and adjust the plastic component if the maxi-
mal elastic yield threshold is reached or by a user specified plastic flow rate,
section 4.2. Finally they check for inverted elements by evaluating the sign
of 𝑑𝑒𝑡(F) and apply the singular value decomposition to remove the reflected
components of F, as originally proposed by Irving et al. (2004).

3.2.4 Elastic Rods

The previous section was concerned with simulation of solids. This section
will cover the special case of a beam or a rod and how these objects can
be described and simulated using PBD. A Cosserat rod describes a rod
with finite extense by its continuous centerline curve r(𝑠) : [0, 𝐿] → R3,
where 𝐿 is the initial length of the rod. Since the curve is a one-dimensional
object the definition of infinitesimal strain from chapter 2 can not be applied
directly. Instead we will derive a strain measurement of stretch and shear
for rods, however, it is clear that a notion of twist can not be expressed
only by the position of the centerline. In order to measure twist and shear
an orthonormal frame with the directors {d1(𝑠), d2(𝑠), d3(𝑠)} is defined for
each point on the centerline. We will define this frame such that d1 and
d2 span the cross-section of the rod and d3 is parallel to the cross-section.
This implies that d3 is parallel to the tangent in rest configuration. This d3
convention has been named adapted frame by Bergou et al. (2008). In a space
with a fixed origin and orthonormal basis vectors e1, e2, e3 the adapted frame
can be expressed as rotated basis vectors. This is achieved by quaternion
rotation, d𝑘 = q(𝑠)e𝑘q̄(𝑠), where q ∈ H is a unit-length quaternion that
describes the rotation of the frame and e𝑘 is embedded into an quaternion
to make the product well defined.

Stretch and shear: These can be measured by comparing the initial
director d3(𝑠) to the tangent in the current configuration 𝜕𝑠r(𝑠).

Γ(𝑠) def= 𝜀rod(𝑠) = 𝜕𝑠r(𝑠)− d3(𝑠) (3.16)

where we named this specific strain measure Γ to make indices more read-
able. In order for the strain Γ to vanish the tangent needs to be both unit-
length and parallel to the initial tangent described by the director. The
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Figure 3.3: A Cosserat rod is described by it’s centerline r and it’s orthonor-
mal frame {d1(𝑠), d2(𝑠), d3(𝑠)}. Reprinted from Kugelstadt et al. 2016

tangent is unit-length if the rod is not stretched and the tangent is parallel
to the initial tangent if the rod is not sheared. As the PBD-constraints are
solved to vanish we can directly employ this to capture both stretch and
shear.

Bend and Twist: Unlike continuous solids for rods we also need to
consider the bending and twisting as the whole object is approximated by its
centerline. Bending and twisting strain can be measured using the Darbaux
vector Ω, which is defined as:

Ω = 1
2

3∑︁
𝑘=1

d𝑘 × d′
𝑘 (3.17)

where d′
𝑘 is the derivative with respect to the initial curve length 𝑠. The

Darbaux vector Ω describes the rate of change of the directors as 𝑠 is varied.
Further we can express the Darbaux vector in terms of quaternions as:

Ω = 2q̄q′ (3.18)

the differentiation of the quaternion with respect to 𝑠 is derived in Kugel-
stadt et al. (2016).

Discritization of the Rod

Explicitly discretized Cosserat rods have been important for simulating dy-
namics of thin materials in both computer graphics, Selle et al. (2011) and
Teschner (2007), as well as in the engineering comunities Lang et al. (2009,
2011). The specific approach outlined below is a summary of Kugelstadt
et al. (2016). A similar approach was proposed by Umetani et al. (2014),
however, their approach uses ghost-points instead of quaternions to measure
bend and twist. This results in higher computational overhead.
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Now that strain has been definied for continuous rods we are going to dis-
cretize the rod. Then we can formulate constraints on these particles that
minimize both the strain measurements Γ and Ω. As a staggered grid pro-
vides higher accuracy for finite derivatives due to the central-difference, Brid-
son 2015, it is commonly used in fluid- and rod-dynamics. Here we measure
positions on the particle positions and the orientations in between particles
or in other words on the rod-elements, fig. 3.4. Thus, we will use half indices
to emphasize that a staggered approach is used, e.g. q𝑖+ 1

2
. The actual imple-

mentation will, of course, work with integers and a respective offset rather
than with floats. A single segment with two particles and an orientation is
considered a rod-element. Thus, a curve is discretized into 𝑁 particles and
𝑁 − 1 rod-elements and orientations.

q
i+1

2q
i− 1

2

q
i+3

2

xxxi−1

xxxi

xxxi+1

xxxi+2

ΩΩΩ

ΩzΩy

Ωx

Figure 3.4: Staggered grid approach for rod-discretization. Reprinted from
Kugelstadt et al. 2016

In order to calculate the strain Γ from eq. (3.16) we need both the tangent
of the curve and its current frame. The tangent of the curve can be approx-
imated by finite difference: 𝜕r(𝑠) ≈ 1

𝑙 (x𝑖+1−x𝑖), where 𝑙 denotes the initial
length of the rod-element. Remember that the director d3 can be expressed
with the orientations and as such the strain of a rod-element can be derived
as:

Γ𝑖+ 1
2
≈ 1

𝑙
(x𝑖+1 − x𝑖)−ℑ(q𝑖+ 1

2
e3q𝑖− 1

2
) (3.19)

where ℑ() denotes the imaginary part of the product. This allows us to
construct a constraint that minimizes shear and stretch strain similar to
the approach in section 3.2.3. Unlike the originally abstracted version of a
constraint, which only included all particle positions, this constraint also
needs access to the orientations. The shear-stretch-constraint only needs
access to the components of a rod-element, thus two positions and an orien-
tation:

𝐶𝑠(x1, x2, q) = 1
𝑙
(x𝑖+1 − x𝑖)−R(q)e3 = 0 (3.20)

Even though we change the abstract notion of a constraint defined in sec-
tion 3.2.2 we can still solve the constraint by linearization.
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Algorithm 4: Cosserat-rods for position based dynamics
1 Time integration velocity of v and predicted position b
2 forall particles 𝑖 do v𝑖 ← v𝑖 + Δ𝑡𝑚𝑖𝑓ext(x𝑖)
3 forall particles 𝑖 do b𝑖 ← x𝑖 + Δ𝑡v𝑖

4 Integration angular velocity 𝜔 and predicted orientation 𝑢 ∈ H
5 forall orientations 𝑗 do 𝜔𝑗 ← 𝜔𝑗 + Δ𝑡I−1

𝑗 (𝜏𝑗 − 𝜔𝑗 × (I𝜔𝑗))
6 forall orientations 𝑗 do
7 𝑢← q𝑗 + 0.5Δ𝑡q𝑗𝜔𝑗

8 𝑢← 𝑢𝑗/ ‖𝑢𝑗‖
9 end

10 forall particles 𝑖 do generateCollisionConstraints(x𝑖 → b𝑖)
11 forall solverIteration do
12 projectConstraint(𝐶1, . . . , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙

,b1, . . . , b𝑁 , 𝑢1, . . . , 𝑢𝑁−1)
13 end
14 Velocity correction
15 forall particles 𝑖 do
16 v𝑖 ← (b𝑖 − x𝑖)/Δ𝑡
17 x𝑖 ← b𝑖

18 end
19 Orientation correction
20 forall particles 𝑖 do
21 𝜔𝑗 ← ℑ(2q̄j𝑢/Δ𝑡)
22 q𝑗 ← 𝑢

23 end

To define a bend and twist constraint we need to evaluate the orientation at
a particle position. Since orientations are only stored in between particles,
fig. 3.4, the orientations need to be interpolated onto the particles from the
adjacent orientations. The computationally simplest approach is to take the
arithmetic mean:

Ω = 1
𝑙
ℑ
(︁

(q̄𝑖+ 1
2

+ q̄𝑖− 1
2
)(q𝑖+ 1

2
− q𝑖− 1

2
)
)︁

= 2
𝑙
ℑ
(︁

q̄𝑖− 1
2
q𝑖− 1

2

)︁
(3.21)

In the discrete case the Darbaux vector is the imaginary part of the quater-
nion that realizes the rotation from discrete frame 𝑖− 1

2 to 𝑖+ 1
2 . Similar to the

shear-stretch-constraint we want this constraint to reduce difference to the
rest configuration. In this case we want the difference between the current
Darbaux vector Ω𝑖 and the initial Darbaux vector Ω0

𝑖 to be zero:

𝐶𝑏(q, 𝑢) = ℑ(q̄𝑢− q̄0𝑢0) = Ω− 𝑠Ω0 (3.22)

where q, 𝑢 ∈ H. The factor 𝑠 is introduced to make the choice of the rest
orientation unique as +𝑞 and −𝑞 represents the same rotation. Thus, for
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Figure 3.5: Bilateral interleaved constraint ordering. Reprinted from Kugel-
stadt et al. 2016

every bend constraint there would be two valid rest positions. The system
is made unique by choosing 𝑠 such that:

𝑠 =
{︃

+1 for|Ω−Ω0|2 < |Ω + Ω0|2

−1 for|Ω−Ω0|2 > |Ω + Ω0|2
(3.23)

The gradients of both constraints can be derived as presented in Kugelstadt
et al. (2016) and thus, the constraint can be solved with a slightly modified
version of the PBD algorithm in section 3.2. It has been extended, algo-
rithm 4, to predict an orientation 𝑢 based on the angular velocity, lines 4
to 9. The constraint projection, line 12, has been extended to allow con-
straints to access predicted orientations. And finally the orientations are
updated based on the applied correction in lines 19 to 21.

As discussed in section 3.2.2 the ordering of constraints can change the result
of the Gauss-Seidel solver. As pointed out in Umetani et al. (2014) solving
the rod constraints in sequential order from one end to the other can lead
to instabilities. They propose a bilateral interleaved constraint ordering as
depicted in fig. 3.5.

3.2.5 Stiff Rods

Deul et al. (2018) employ a similar approach, however, they combine zero-
stretch, bending and twisting conditions into a single constraint. In order to
incorporate meaningful physical quantities they derive a compliance prop-
erty 𝛼 for the constraint as proposed in Macklin et al. (2016). This allows
to define Youngs-modulus for bending and a torsion modulus. Usually, the
shear-modulus is used to describe the torsion. However, since the constraint
enforces zero-stretch and shear is independent of user material parameters
notion of torsion-modulus emphasizes its independence from shear. As noted
in section 3.2.6 these compliance values are only meaningful if the system
can get reasonably close to convergence, which requires very high iteration
counts with the non-linear Gauss-Seidel approach. In order to alleviate this
issue they use a direct solver to compute the solution to the linear KKT6

6Karush–Kuhn–Tucker conditions
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subproblem. Baraff (1996) describes how to get the perfect elimination or-
der for an 𝐿𝐷𝐿𝑇 decomposition. The elimination order only changes when
the topology of the object is changed and can thus, be pre-computed before
the simulation. This allows to directly 7 solve the system in 𝒪(𝑛). However,
this approach only works for acyclic constraints. To solve inequalities and
cyclic constraints such as a rope fixed on both ends the usual Gauss-Seidel
solver is used. Thus, for all compatible constraints they first compute the
𝜆 and the corresponding deltas, apply them to the predictions of position
and orientations as well as to update the compliance value. Then collisions
and closed looped constraints are solved using the Gauss-Seidel approach.
This allows their method to significantly reduce iterations needed even for
large error-thresholds thus, making up for the higher cost of the KKT-solver
compared to the non-linear Gauss-Seidel.

Algorithm 5: KKT/GS solver
1 while residual error > 𝜂 do
2 forall rods do
3 direct KKT Solver
4 end
5 forall collsion do non-linear Gauss-Seidel
6 end

3.2.6 Convergence Rate

While PBD is well suited for simulating soft elastic materials and fluids like
jelly, honey or cloth the slow convergence of the Gauss-Seidel solver makes it
nearly impossible to simulate stiff materials like wood or metal. Exchanging
the solver to a global one, as in Goldenthal et al. (2007) allows good approxi-
mation of stiff materials and helps to connect PBD to implicit integration as
further discussed in section 3.2.7. The alternative is to introduce constraint-
hierarchies. Solving a set of coarse constraints first to propagate changes
quickly through the object and then simulate more detailed response with
a finer set of constraints. Consider a rod as in fig. 3.6, assuming that we
use the approach Cosserat approach from section 3.2.4 the minimal rod that
is still bendable contains three particles and three constraints: two stretch-
shear-constraints and a bending constraint between the two rod-elements.
As such the first hierarchy will correct particles {0, 2, 4} in fig. 3.6. The next
hierarchy will then work with the corrected position of these particles. Al-
ternatively we may also define the positions of higher hierarchies relative to
their parents. These concepts are further explored and generalized to trian-

7Direct in opposition to an iterative approach.
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gle and tetrahedral meshes by Matthias Müller (2008), Schmitt et al. (2013),
and Wang et al. (2010),

0 1 2 3 4

I

II

Figure 3.6: The first hierarchy I only corrects particles {0, 2, 4} and thereby
rapidly propagates corrections through the whole length of the rod. The
second hierarchy II then works with the corrected particle positions. This
structure is repeated until all particles in the rod are covered.

By considering only fixed cloth, like flags attached to a pole Kim et al. (2012)
used long-distance-attachments (LDA) to rapidly propagate corrections from
the fixed particles to the rest of the cloth. A similar approach was used in
Müller et al. (2012) to simulate in-extensible attached rods, like hair or fur,
where the constraints are ordered such that the rod is corrected from the
fixed particle onward. This combined with the original Gauss-Seidel solver,
which uses the corrected position from the previously solved constraint and
thus, guarantees no stretch in a single iteration. As all particles in a rod
are corrected based on the movement of the fixed particle in the rod their
method is called Follow-The-Leader, fig. 3.7.

l0

l0

l0

1x

2x

3x
4x

Figure 3.7: The Follow-The-Leader method improves convergence by order-
ing constraints to be solved from the fixed end to the free. Reprinted from
Müller et al. (2012)

Another limitation of PBD discussed so far is that the stiffness of the ob-
ject depends on the iteration count. It would be preferred if the stiffness
would only depend on the user specified stiffness values. This addressed by
Macklin et al. (2016) by introducing an compliance multiplier with each con-
straint. Each calculation of 𝜆 can be seen as an incremental change to a total
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multiplier and thus, effectively limiting how much force a single constraint
can apply. While this approach does manage to fix the convergence of the
solver to a user specified stiffness value it reduces the convergence rate even
further. As most PBD applications run in an interactive environment their
iteration count is limited and thus, the solver is stopped before convergence8

is reached. As such the default PBD implementation described above rarely
benefits from this approach.

3.2.7 Projective Dynamics

Projective dynamics, Bouaziz et al. (2014), builds upon the strain based
dynamic approach and connects it to implicit Euler integration. Their key
insight is that non-linearity of the constraints can be decoupled from the
elastic response. This is done by defining a constraint manifold 𝜀 = 0. As
it is based on strain it is independent of the material response. This allows
us to measure the potential energy, i.e. the distance from this manifold in a
linear manner while keeping the non-linearity from the constraint manifold
itself. As described in section 3.2.3 we can define strain constraints on a
discrete set of particles in both two and three dimensions with triangles
and tetrahedral, respectively. We can then project the prediction position x
onto this constraint manifold and storing the projection as b. The potential
energy can now be solved for as the distance between the position x and
projection b. This results in the minimization of a quadratic system which
is equivalent to the solution of a linear system. Assuming the constraints
stay constant the global solution to this system can efficiently computed by
factorizing the system at start up.

Projective dynamics is similar to section 3.2.5 as it also combines local (pro-
jection) and global solvers to improve convergence. Further it shows that
PBD is a special case of the well known implicit Euler integration. Pro-
jective dynamics is extended by Narain et al. 2016 to improve convergence
by applying alternating direction method of the optimization algorithms by
Boyd (2010).

3.3 Shape Matching

Unlike previously presented methods shape matching is meshless and as
such operates without elements. It allows unconditionally stable simulation
of elastic and plastic behavior and is easy to implement. So far the other
methods have computed the strain and derived an elastic response from
that. Shape matching on the other hand estimates the particle positions as

8Or rather before a epsilon criterion with sufficient accuracy would terminate the solver.
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if the object would be rigid. By moving the actual positions to these goal-
position the elastic response is realized. To discretize the body of interest,
points are scattered within its region. As with PBD the particles are first
integrated in time by considering external forces to predict new positions.
To calculate the rigid-body positions called goal positions 𝑔 we need the
optimal rigid-body transformation. It can be computed from the difference
between the current and the material configuration. Then by applying the
optimal transformation to all material coordinates ui the goal positions gi
are computed. After each timestep every particle position pi is adjusted
towards its corresponding goal position gi. Given these two sets of positions
ui and pi the optimal rotation R and translation t between them can be
found by minimizing:

∑︁
𝑖

𝑚𝑖(R(u𝑖 − 𝑡̃) + t− p𝑖)2 (3.24)

The optimal translation vectors 𝑡̃ and 𝑡 turn out to be the center of mass
in the rest and current configuration, respectively which intuitively makes
sense as we are looking for a rigid-body translation.

𝑡̃ = x̃𝑐𝑜𝑚 =
∑︀

𝑖 𝑚𝑖x̃𝑖

𝑚𝑖
, 𝑡 = x𝑐𝑜𝑚 =

∑︀
𝑖 𝑚𝑖x𝑖

𝑚𝑖
(3.25)

The center of mass can be used to define all particle positions relative to
it, let q𝑖 = x̃𝑖 − x̃𝑐𝑜𝑚 and let p𝑖 = x𝑖 − x𝑐𝑜𝑚. By minimizing the term∑︀

𝑖(𝐴q𝑖−p𝑖)2 we obtain the optimal transformation 𝐴 in the least-squares
sense. To minimize this function we set all its derivatives with respect to 𝐴
to zero which yields:

𝐴 = (
∑︁

𝑖

𝑚𝑖p𝑖q𝑇
𝑖 )(

∑︁
𝑖

𝑚𝑖q𝑖q𝑇
𝑖 )−1 = 𝐴𝑟𝐴𝑠 (3.26)

It is apparent that 𝐴𝑠 is symmetric and as such does not contain any rota-
tion. Thus, we can extract the optimal rotation R from the moment matrix
𝐴𝑟. Note that the moment matrix can be computed directly as:

𝐴𝑟 =
∑︁

𝑖

𝑚𝑖qq𝑇 (3.27)

Polar decomposition, section 2.1.2, allows us to extract the rotational com-
ponents from the remaining deformations A𝑟 = 𝑅𝑆qp. The goal position
can now be computed as:

𝑔𝑖 = 𝑅(x̃𝑖 − x̃𝑐𝑜𝑚) + x𝑐𝑜𝑚 (3.28)

With the goal positions for all particles computed a simple distance con-
straint can be employed to pull the current particles to their respective goal
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Figure 3.8: The initial configuration with positions x0

𝑖 is matched to the
deformed configuration with an ideal rigid translation 𝑡 and rotation 𝑅. To
simulate elastic behavior (or the reduction of strain) the positions x𝑖 are
pulled towards the goal positions 𝑔𝑖. Reprinted from Matthias Müller et al.
(2005)

positions. As such this approach can be integrated seamlessly into the PBD-
framework.

The method described above is based on Matthias Müller et al. (2005) and
as described only allows for small deformations. To allow for larger defor-
mation one can either introduce a projection that does not only depend on
𝑅 but also on the linear transformation 𝐴 or define multiple overlapping
shape-matching regions. The different shape-matching regions contain a set
of particles on which the shape-matching is applied, overlap between re-
gions connects them to each other. The amount of overlap determines the
stiffness but also significantly increases computational overhead. Matthias
Müller et al. (2008), introduced a fast summation technique for regular grids
to reduce the redundant computations. Doug et al. (2007), extends this grid-
summation approach to allow for irregular shape combinations which allows
for inhomogenius materials and also makes handling of boundary conditions
more efficient. Diziol et al. (2011) build upon the fast summation approach.
In contrast to previous methods they only use the surface mesh of a volu-
metric object to compute goal-positions.

3.3.1 Oriented Particles

While shape-matching works well for evenly distributed particle sets the ma-
trix A𝑟 eq. (3.26) becomes ill-conditioned for co-planar particle sets, which
makes simulation of thin materials like sheets and rods difficult. Matthias
Müller et al. (2011) addresses this issue by storing an orientation informa-
tion along with the position for each particle. This allows us to reformulate
the computation of the optimal rotation such that it is also stable for co-
planar particles and even shape matching groups with only a single particle.
To compute the moment matrix 𝐴𝑖 for each particle 𝑖 we associate a small
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sphere with each particle. By definition of the moment matrix is then given
by:

𝐴𝑖 =
∫︁

𝑉𝑟

𝜌𝑅xx𝑇 𝑑𝑉𝑟 = 𝜌𝑅

∫︁
𝑉𝑟

xx𝑇 𝑑𝑉𝑟

= 𝜌𝑅

∫︁ 2𝜋

0

∫︁ 𝜋

0

∫︁ 𝑟

0
(𝑟𝑠𝑖𝑛𝜗)2𝑟2𝑑𝑟 𝑑𝜗 𝑑𝜙

= 4
15𝜋𝑟5𝜌𝑅 = 4

15𝜋𝑟5 𝑚

𝑉𝑟
𝑅 = 1

5𝑚𝑟2𝑅

(3.29)

where 𝑉𝑟 is the volume of a sphere with radius 𝑟. Having defined the mo-
ment matrix for every particle we can proceed to combine them to a moment
matrix for a set of particles. However, as each moment matrix 𝐴𝑖 has been
defined with its own particle position as center we need to adjust the indi-
vidual moment matrices to fit the center of mass of the object, as described
in Doug et al. (2007).

𝐴𝑟 =
∑︁

𝑖

(︀
𝐴𝑖 + 𝑚𝑖x𝑖x̃𝑇

𝑖

)︀
−𝑀x𝑐𝑜𝑚x̃𝑇

𝑐𝑜𝑚 (3.30)

This allows us to compute the momentum matrices for different shape-
matching regions while making use of the orientation information. Jones et
al. (2015) describe an efficient algorithm to cluster particles and perform col-
lision checks on them and as such is well suited for creating shape-matching
groups.

3.3.2 Related Methods

Instead of defining goal positions, Sorkine et al. (2007), derive a rigidity mea-
surement which defines a linear equation system that can be solved directly.
As they optimize for rigidity their approach is called as-rigid-as-possible.
Choi et al. (2018), extend oriented particle to allow for faster convergences
with a partial global solver similar to projective dynamics in the case of
PBD. Another meshless method is based on a sparse discretization of the
body with frames that carry both position and orientation information simi-
larly to oriented particles. Unlike oriented particles and other PBD methods
they actually derive the elastic energy potentials and integrate them similar
to an FEM simulation. The resulting deformations are then applied to the
visual representation with dual-quaternion skinning. This method was in-
troduced by Gilles et al. (2011) and allows interactive frame rate with very
sparse sampling of the object. A unfied solver for rods, sheets and solids was
proposed by Martin et al. (2010) which also operates on frames, however re-
quires a denser sampling. Finally Faure et al. (2011) extend this formulation
for heterogeneous materials.



Chapter 4

Fracture

The approaches in the previous chapter only considered elastic deformation
this will be extended here to include plastic deformation as well. Plastic
deformation is required to model ductile fracture, without it only brittle
fracture can be simulation. For this purpose we will define a elastic yield
criterion and a fracture condition which represents the maximum strength
material can withstand. These can be integrated into the methods discussed
in the previous chapter and is exemplified on oriented particles. For more
complete overview of fracture methods we will start off with a short discus-
sion of non-physical fracturing.

4.1 Non-Physical Fracture

Muguercia et al. (2014) categorize interactive fracturing into either non-
physical methods such as image-based or procedural fractures and physical
based fracturing. Non-physical methods are popular in video games as they
have a guaranteed run time cost that is usually fairly low. The most com-
mon method is to pre-fracture the geometry. In this method the whole body
is first decomposed into small components. Fracturing then separates these
components from each other but no additional splits are introduced. This
allows for fine grained artistic control and the decomposition can be done
in advance. The connected object can be simulated as a rigid body until
a fracture condition is met. As the fracture pieces are decided before the
simulation started it can not respond dynamically to user input. Matthias
Müller et al. (2013) propose a convex decomposition to dynamically apply
a fracture pattern to the geometry based on the impact position. This de-
composes the object dynamically into a set of convex pieces. Since all the
fractured pieces are convex the rigid-body simulation and collision response
can be computed for a large number of bodies in real-time. A sightly more

36



4. Fracture 37

ε

 

σ

1)
2)

Figure 4.1:
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2 Material failure/fracture

Reprinted from Richfield
2009

sophisticated approach is to connect the individual parts of the object with
glue-constraints. These constraints can break under tension, however this
approach requires to dynamically detect islands that then need to be simu-
lated as rigid bodies. This method is commonly used in software packages
such as Blender or Houdini due to its high versatility, artistic control and
ease of use.

4.2 Plastic Deformations

So far we have only considered the elastic response of each method. Which
means that if the load is removed the object returns to its initial configura-
tion. However, not all materials respond only in an elastic manner to strain.
Some also exhibit plastic deformation. Unlike elastic deformation plastic de-
formation dissipates the load as heat and actual material flow resulting in a
permanent deformation. Materials that only exhibit elastic behavior before
their failure are considered brittle. Examples of brittle materials are glass,
certain types of steel or ceramics. One distinctive feature of brittle frac-
ture is that once fracturing occurs the fracture front continues to propagate
through the material even if the load has been removed. Brittle fracture also
tends to propagate at high velocities making them instant for most choices
of time-step. We have and continue to assume that the elastic response is
linear to strain, however, as can be seen in fig. 4.1 this is not necessarily the
case.

Other materials like aluminum or structural steel exhibit plastic deformation
before they fracture. Consider the stress-strain curve in fig. 4.2, note that
only small strains yield elastic response, however, here the elastic response is
nearly linear. As plastic deformation changes the structure of the material it
also changes the rest-configuration that the elastic response will correct to-
wards. This also has an effect on how the strain/stress response is measured.
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As such the cross-section of the object changes during plastic deformation.
The apparent stress 𝐹

𝐴0 that is measured with respect to the initial cross-
section, thus, does not account for plastic deformations. The true stress 𝐹

𝐴 is
difficult to measure since the cross section changes non uniformly. Necking
region is the region where the apparent stress of the object drops due the
reduction of the cross-section. The plastic deformation further depends on
the duration of loading which is measured by the plastic flow rate. Unlike
brittle materials, materials with strong plastic deformation exhibit ductile
fracture. Here the material is pulled apart rather than cracked. The crack
propagation is slow when compared to brittle material and induces further
plastic deformations to the materials. In contrast to brittle fracture the crack
does not propagate through the material if the load is not increased. Thus,
in order to model ductile fracture the methods above need to be extended
to handle plastic deformations.

4.2.1 Yield Criterion

Strain itself is a pure geometric measurement of non-rigid deformations. By
splitting the total strain 𝜀 into an elastic 𝜀𝑒 and a plastic 𝜀𝑝 components
we can introduce plastic deformation into any of the strain based dynamic
approaches. In chapter 3 we introduced a number of methods to compute
the elastic response of the material, to introduce plasticity into these models
the response needs to be computed based on the elastic strain rather than
the total strain. So any non-rigid deformation will first contribute to elas-
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tic strain and once the elastic limit is reached additional deformation will
contribute towards plastic strain. This requires to define the elastic limit.
O’brien et al. (2002) proposed to employ the Mises yield criterion to define
the elastic limit and is based on the deviation of elastic strain:

𝜀′ = 𝜀𝑒 − Tr(𝜀𝑒)
3 𝐼 (4.1)

where Tr() is the trace of a matrix. By subtracting the average of the trace
we remove uniform scaling from the strain. Making the plastic deforma-
tion independent of uniform stretch, prevents the object from changing its
volume. We can then compute the elastic limit for a material constant 𝛾1
as:

𝛾1 < ‖𝜀′‖ (4.2)
where ‖·‖ is the Frobenius norm. Equation (4.2) defines Mises yield criterion
as in Y. C. Fung 1965. Next we can extract the plastic component of the
strain by:

Δ𝜀𝑝 = ‖𝜀
′‖ − 𝛾1
‖𝜀′‖

𝜀′ (4.3)

This allows us to update plastic deformation in every time-step as 𝜀𝑒 =
𝜀𝑝 + Δ𝜀𝑝.

4.2.2 Fracture Criterion

The previous section 4.2.1 gave us a simple way to compute the elastic limit
on the stress-strain-curve. This allows to split strain into an elastic and
plastic component. Plastic deformation or the total deformation also has
a limit. This limit describes how much stress the material can withstand
before it fractures. As with elastic limit a simple approach to determine
the material fracture point is needed. A popular approach is to decompose
the stress matrix 𝜎 into its eigenvalues 𝜆𝑖(𝜎) and eigenvectors 𝜚𝑖(𝜎) called
principal stresses. Then the user can set a uniaxial-material strength 𝑠 which
is then compared to the largest stress eigenvalue max𝑖(𝜆𝑖(𝜎)) > 𝑠 to decide
if a fracture occurs. Then the fracture plane is set to be perpendicular to
the corresponding eigenvector 𝜚𝑖(𝜎). Depending on the simulation method
we can then proceed to split or remove the elements or constraints that pass
through this fracture plane.

A slightly more complex, yet more accurate fracture criterion is defined in
O’brien et al. (1999). They propose to decompose the stress into compres-
sive 𝜎− and tensile components 𝜎+. This is also based on the eigenvalue
decomposition as :

𝜎+ =
3∑︁
𝑖

max
𝑖

(0, 𝜆𝑖(𝜎))𝑚(𝜚𝑖(𝜎)) (4.4)
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𝜎− =
3∑︁
𝑖

min
𝑖

(0, 𝜆𝑖(𝜎))𝑚(𝜚𝑖(𝜎)) (4.5)

where 𝑚(·) is a matrix that collects the principal stress as:

𝑚(𝑎) =
{︃

𝑎𝑎𝑇 /|𝑎| 𝑎 ̸= 0
0 𝑎 = 0

(4.6)

Note that 𝑚 has |𝑎| as eigenvalues and 𝑎 as eigenvectors. By polar de-
composition we can compute the highest tensile and compressive principal
direction and value on the tensile and compressive matrices, respectively.
As before a simple threshold criterion can now be applied to the maximum
value.

4.3 Oriented Particle Fracture

In this section we will summarize how plastic deformation and a fracture
criterion can be integrated into the oriented particle approach. This integra-
tion is based on Choi (2014). As we have seen in section 3.3 shape-matching
does not compute the strain thus, the Mises yield criterion can not be ap-
plied directly to determine the elastic limit. First we must derive an optimal
stretch measurement which we will use instead of strain to determine ma-
terial failure.The optimal stretch can be derived similarly to the optimal
rotation. If we look at the strain derivation with polar decomposition in sec-
tion 2.1.2 we notice that the linear transformation can be decomposed into
a rotational matrix and an additional part that contains the stretch. We
already have the rotation 𝑅 computed with the shape-matching approach,
therefore we can proceed to formulate the optimal stretch based on the now
fixed rotation by minimizing:∑︁

𝑖

𝑚𝑖‖𝑅𝑆q𝑖 − p𝑇
𝑖 ‖2 (4.7)

where q𝑖 = x̃𝑖− x̃𝑐𝑜𝑚 and p𝑖 = x𝑖−x𝑐𝑜𝑚 as in section 3.3. By introducing an
additional constraint that ensures that the stretch-matrix 𝑆 is symmetric
to the above equation Choi (2014) derived the optimal stretch as:

𝑆 = 𝜚(𝐴𝑠)
[︀(︀

𝜚(𝐴𝑠)𝑇 𝜆(𝑆pq)𝜚(𝐴𝑠))
)︀
∘ Λ

]︀
𝜚(𝐴𝑠)𝑇 (4.8)

where 𝐴𝑠 = (
∑︀

𝑖 𝑚𝑖qq𝑇 ) as defined in eq. (3.26), ∘ is the Hadamard product
that produces the element-wise multiplication of its operand matrices and
Λ𝑖𝑗 = 2/ (𝜆𝑖(𝐴𝑠) + 𝜆𝑗(𝐴𝑠)). By using eigenvalue decomposition we can de-
fine the Greens-strain based on this optimal stretch as 𝜀𝐺 = 1

2𝜚(𝜆2− 𝐼)𝜚𝑇 .
Now we can use Mises yield criterion or another yield criterion to separate
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the total strain into an elastic and a plastic component. In our case we are
interested in the plastic deformation rather than the plastic strain, this can
be computed by applying the yield criterion to the stretch matrix we just
computed. Given the plastic deformation D𝑝 we replace the relative rest
position with: q𝑖 = D𝑝(x̃𝑖 − x̃𝑐𝑜𝑚) to apply the plastic deformation to the
calculation of the goal position.



Chapter 5

Composite Material

As touched on in the introduction our main idea is to combine a solid sim-
ulation with a rod simulation into a composite material. Combintation of
solid and rod simulations is not a new idea, Liu et al. (2012) propose a
force based method that allows artists to paint in fibers into a material to
define its response in that direction. More recently Cai et al. (2016) com-
bined the fibers directly into the constitutive model of the solid simulation.
This allows them to reduce computational expense as they do not need to
compute the elastic response of the rod model. All these methods have in
common that they are unable to simulate full anisotrophy. Rather they de-
fine a fiber-direction that has a different, usually higher, stiffness than to
the orthogonal plane and, therefore, it is called transverse isotrophy. Our
method will adopt the former methodology and simulate a rod and a solid
in sequence, effectively summing their respective elastic correction. The idea
of rod-solid-composite materials is not new for the computer-graphic com-
munity. However, to our knowledge this thesis is the first to formulate this
kind of material for PBD-solver.

Due to its ease of implementation, computational efficiency and in part
due to previous experience with PBD we chose to test the approach with a
PBD-solver. The original PBD-approach has been extended to simulate rods,
sheets and solids as discussed and demonstrated in section 3.2. Clavet et al.
(2005) showed that PBD combines well with ideas from SPH to simulate
both viscous and non viscous fluids which was further developed by Macklin
et al. (2013) and Takahashi et al. (2016). As such we can consider PBD to be
a unified solver. By basing our method on PBD it can easily be extended to
interact with any kind of material. Further we will use the Cosserat approach
presented by Kugelstadt et al. (2016). With these two options fixed we will
discuss first how to discretize the objects for the rod simulation and then
proceed with the choice and coupling of solid simulation.

42
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5.1 Rod Configuration

Before the choice of the solid simulation is discussed we will consider the
rod discretization. This will yield a set of particles which can be used and,
if necessary, extended by the solid simulation.

5.1.1 Central Continuous Rod

For simulating whole tree structures it is common to approximate their
branches as rods and simulate the trees behavior solely based on rod-dynamics,
as done by Pirk et al. (2014, 2017) . In case of tree-dynamics, the rod-
simulation has multiple advantages, first and most obviously, only a fraction
of the particles is needed to approximate the branches. This will signifi-
cantly reduce computation. For trees the interaction of roots with the soil
is usually not visible and thus neglected. For this reason there is only a
single fixed point in the tree-graph. This allows to employ approaches like
Follow-The-Leader or Long-Range-Attachment as covered in section 3.2.6.
Both these methods work if and only if there is a single fixed point for each
graph. Follow-The-Leader biases the direction corrections propagate by or-
dering and directly applying the deltas such that subsequent constraints
operate with the already corrected predictions. However, the single-fixed
point assumption falls apart as soon as we apply a significant load to an-
other particle in the graph. The collision forces the corresponding particles
to certain positions thus, fixing them violating the initial assumption. Hence,
these approaches fail instead we employ hierarchical constraints to increase
convergence. As we saw in section 3.2.4 we can calculate stretch, shear, bend-
ing and twisting strain along the rod. Based on these strain-measurements
we can not only describe the elastic response but also formulate a fracture-
criterion. However, as the center line represents the whole material rather
than approximate the specific region around a particle, as with FEM or
SPH, we can only tell that the rod is going to fracture and that it’s going
to fracture in a radial, longitudinal or tangential direction. Yet, we will not
be able to identify where the fracture starts or how it is going to propagate
through the material, fig. 5.1.

It might be possible to employ a heuristic that captures the fracture pat-
tern of a specific material. However, in order to compute a physical based
fracture response we need to fully discretize the rod and employ a solid
simulation, chapter 3, on these particles, fig. 5.2a. The particular choice
of solid-simulation method will be discussed later in this chapter, for now
we will just assume that we can evaluate the strain and elastic response
at the discrete particle positions. With these strain measurements we can
measure where exactly and in what direction the rod will fracture. The pur-
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Figure 5.1: We can simulate the dynamics of a branch (in black) with a sin-
gle centered rod (in green) and even formulate a fracture criterion. However,
we only know how much deformation the rod can handle, but not where and
in what direction the fracture (in red) will propagate.

(a) (b)

Figure 5.2: By adding additional particles we are able to measure the strain
within the object. This allows us to determine a fracture direction as seen
in subfigure a. Fracture parallel to the center line as they are common in
anisotropic materials need their own center line as the elastic response is
now independent of the previous center line. The stiffness of the center line
would need to be adjusted depending on how the cylinder is fractured.

pose of the central rod configuration is to reduce the computational cost
over a complete discretization. In order to keep this benefit we calculate
the main elastic response of the whole object based on the central rod. As
we already have quaternion computed for every rod-particle1 we can ap-
ply the rod-corrections to their surrounding particles with dual-quaterion
skinning. Then we can evaluate the local response with only a few Gauss-
Seidel iterations. In order to summarize local responses back to the central
rod one could employ shape-matching groups as discussed in more detail in
section 5.2.3. In most cases we might not even need to evaluate the local-
strains as the strain on the central-rod is small enough that a fracture can
not occur.

1We assume that we are using the Cosserat model discussed in section 3.2.4.
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The real issue occurs when we consider how the fracture needs to change the
dynamic response of the system. It is obvious that a fracture as in fig. 5.1
needs to reduce the stiffness of the central rod yet, it is not apparent how
the stiffness will change. We could approximate the stiffness reduction by
computing the minimum relative cross-section of the still connected part,
the minimum of the green area in fig. 5.2b. As the dynamics of the system
depend on the center rod we would also need to add an additional rod to
the fractured part. Changing the resolution during the simulation is a chal-
lenge as the total-dynamics should not vary due to the change in resolution.
Though in this case small error may be masked due to the violent nature
of a fracture. Adaptive resolution poses many more challenges first it needs
to be evaluated when to change the resolution and then prevent the sys-
tem from recursively refining the discretization. As the resolution changes
are dynamic it becomes difficult or even impossible to predict the computa-
tional cost of the system making this ill suited for video games with a strict
cost budget. Perhaps the largest drawback of this approach would be the
limitation to cylindrical objects or objects composed of connected cylinders,
like trees.

5.1.2 Parallel Continuous Rods

In the central rod approach the fracture and the dynamics are computed
on different domains making the coupling between them difficult. By using
many parallel rods as proposed by Sutherland (2012) the fracturing is com-
puted in the same domain as the dynamics fig. 5.3. In this approach the rods
are continued through the object making its way back to a fixed region. To
connect the rods to each other we can employ any solid simulation on the al-
ready existing rod particles. However, it is unclear how to address junctions
or even the simple reduction of diameter as common among tree-branches.
As seen in fig. 5.3b the naive approach would lead to very high particle den-
sities in thin branches and coarse sampling for the trunk. To address this
the number of rods needs to depend on the area of the cross section. To
maintain continuous rods this implies that we need to merge and combine
rods. This is not addressed by Sutherland (2012) as they assume perfectly
cylindrical objects.

5.1.3 Scattered Rod Segments

Finally we will present the rod-configuration that solves most of the issues
of the previous configurations though also increasing computational cost.
Instead of using continuous rods that run through the whole length of the
branch we only employ shorter rod-segments that are not fixed at any point,
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(a) (b)

Figure 5.3: Parallel rods

(a) (b)

Figure 5.4: Using many short rods

fig. 5.4a. The rods depend on the solid simulation that operates on the rod-
particles to keep the rods connected as one object until it fractures. This
configuration is very similar to microscopic observations of timber as we
noted in the introduction. The rods will give additional strength and help
to propagate corrections. By aligning the rods with the imaginary central
axis we get anisotropic behavior. We could also randomize the direction of
the rods, fig. 5.4b, to get a behavior similar to presswood.

When we fracture this material we can define a fracture criterion for both,
the rods and the solid simulation. Then we can proceed with the fracture as
if we would compute them in isolation. For example, when a rod fractures
at a certain position there will be less correction in that area thus more
strain in the solid simulation making it more likely that the solid simulation
will also fracture in that region. The same is true for the opposite fracture
order. This works since both the rod and solid simulation work on the same
position information and so we get implicit fracture coupling. Further as
the fracture plane can run through rods we also get the correct dynamic
response by just removing a few rod-constraints.

Using rod-segments also allows to simulate arbitrary shapes. By specifying
a direction of anisotropy, in case of timber it is the fiber direction, we can
make any shape anisotropic.
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Figure 5.5: For every particle the particles within a radius 𝑟 that are not
part of the same rod-segment are connected by distance constraints. These
constraints are then weighted in an SPH fashion using a kernel function that
receives the relative distance ℎ = 𝑑/𝑟 as an argument. Cosserat constraint in
green, distance constraint in orange, current particle and it’s radius in red.

5.2 Solid Configuration

Here we discuss the choice of solid simulation that connects the scattered
cossarat rods to a single object. In order to couple it with the rods the solid
simulation needs to be PBD based and provide some sort of orientation
information.

5.2.1 Strain Based Dynamics

The first approach we tried was using the strain based dynamics from sec-
tion 3.2.3. Before the object can be simulated it needs to be decomposed
into tetrahedral elements. This decomposition can yield ill-shaped elements
especially for a tree-model, since it includes thin branches which are im-
possible to capture with a coarse tetrahedron decomposition. Where as a
fine grained decomposition does introduce too much computational expense.
However the approach does provide us with strain measure for every ele-
ment. When working with strain directly as is the case here we could even
employ an anisotropic elastic response. As we do not use a constitutive strain
stress model we only require 3 stretch and 3 shear parameters to capture the
anisotropy. As with all mesh-based approaches large deformations can result
in element inversion, as covered in section 3.2.3. To couple the approach to
the rods the orientation for each tetrahedral-element needs to be computed
and interpolated onto the corresponding rod-elements.
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5.2.2 Distance Constraints

Next we tried simple distance constraints between particles of different rods.
For every particle we must first find all its neighbors within a certain ra-
dius 𝑟 that are not connected by Cosserat constraints. As we are simulating
solids rather than fluids the neighborhood of each particle does not change
until a fracture occurs. This means that we only have to do the neighbor-
hood search once at the start of the simulation. Even though a distance
constraint does not consider angles if a particle is connected to other rods
by at least three unique distance constraints, it will correct itself to the
initial configuration.

While we do avoid the decomposition that plagued the strain based approach
we can not properly couple the distance constraints with the Cosserat con-
straints. As distance constraints only change the position of the particles,
but not the orientation of the rods, we are unable to correct for torsion
within the object.

5.2.3 Oriented Particles Coupling

The previous approach is already very similar to oriented particles. It is also
mesh-less and corrects particles within a certain radius. Oriented particles
extend this approach by adding an orientation attribute to each particle.
This allows us to couple the solid portion of the simulation to both the
strain-shear and the bend-twist constraints. To couple oriented particle cor-
rections to the rods they need to (1) operate on the same particle, fig. 5.6
and (2) operate on the same attribute for position and orientation. For sim-
plicity we define the shape-matching groups for every particle. Remember
that the Cosserat approach used a staggered grid to store orientations. Ori-
ented particles on the other hand store the orientation directly within the
particle. As both approaches work on the same position information these
are implicitly coupled as the rod projections will already be applied when
we start with the shape matching. First we apply the Cosserat projection
step, line 10 which will update the predicted particle position and the pre-
dicted orientation on the rod-elements. For the oriented particle update we
need the current orientation on the particles themselves rather then on the
rod-elements. Spherical linear interpolation (slrep) allows us to average the
rod-element orientations onto the particles, line 11. In line 12 we perform
the shape-matching for each group, compute the goal positions and apply
the correction to each particle, as described in section 3.3.1. This also up-
date the orientation on the particles. To ensure that the Cosserat correction
in the next solver-iteration works with the current orientations we need to
interpolate the orientations back onto the rods, line 13. By using a delta
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Figure 5.6: The red particle forms with the orange particles that are within
a radius 𝑟 around it a shape-matching group. The oriented particles store
position and orientation information on the particles. The Cosserat rods,
drawn in green, instead store the orientations on the rod-elements as noted
with the half indices.

summation for the constraint projection we can run the projection step con-
currently. The deltas need to be applied before we can run the oriented
particle update. As such this behaves like a Gauss-Seidel approach between
the different methods but as a Jacobi solver within each method. Thus the
ordering of the methods matters. As such we should apply collision con-
straints at the last correction to ensure that it is fully satisfied and ensure
that other updates can not correct the particles back into a collision, line 19.
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The remaining code is equivalent to algorithm 4 and left in to make the code
more readable and independent.

Algorithm 6: Oriented Particle to Cosserat Rod Coupling
1 forall particles 𝑖 do v𝑖 ← v𝑖 + Δ𝑡𝑚𝑖𝑓ext(x𝑖)
2 forall particles 𝑖 do b𝑖 ← x𝑖 + Δ𝑡v𝑖

3 forall orientations 𝑗 do 𝜔𝑗 ← 𝜔𝑗 + Δ𝑡I−1
𝑗 (𝜏𝑗 − 𝜔𝑗 × (I𝜔𝑗))

4 forall orientations 𝑗 do
5 𝑢← q𝑗 + 0.5Δ𝑡q𝑗𝜔𝑗

6 𝑢← 𝑢𝑗/ ‖𝑢𝑗‖
7 end
8 forall particles 𝑖 do generateCollisionConstraints(x𝑖 → b𝑖)
9 forall solverIteration do

10 projectConstraint(𝐶1, . . . , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙
,b1, . . . , b𝑁 , 𝑢1, . . . , 𝑢𝑛−1)

11 forall particles 𝑖 do 𝑢𝑖 ← slerp(𝑢𝑖− 1
2
, 𝑢𝑖+ 1

2
)

12 orientedParticleCorrection(b1, . . . , b𝑛, 𝑢1, . . . , 𝑢𝑛−1)
13 forall particles 𝑖 where 𝑖 > 0 do 𝑢𝑖− 1

2
← slerp(𝑢𝑖−1, 𝑢𝑖)

14 end
15 Velocity correction
16 forall particles 𝑖 do
17 v𝑖 ← (b𝑖 − x𝑖)/Δ𝑡
18 x𝑖 ← b𝑖

19 projectCollisionConstraint(𝐶1, . . . , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙
,b1, . . . , b𝑁 , 𝑢1, . . . , 𝑢𝑛−1)

20 end

5.3 Compared to Sutherland

To our knowledge the only other publication within the computer graph-
ics community that specifically covers anisotrophic fracture is Sutherland
(2012). They assume cylindrical objects which are discretized by parallel
rods. As discussed in section 5.1.2 this rod configuration is limited to cylin-
drical shaped objects. Rods are simulated by computing elastic bending and
stretching potentials based on the Kirchoff-model, the torque potentials are
not considered. The inter-rod connection is realized by string forces. As
such the object is only represented by its discrete points making it difficult
to derive consistent material properties and to generate a fracture surface.
Our approach solves this problem by connecting the rods with a solid sim-
ulation thus, providing a continuum approximation and an element based
fracture surface. Using a global solver simulation results are more compli-
ant with material properties. However, force based methods are prone to
overshooting due to integration. Overall our method significantly reduces
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computational costs, is independent of the objects shape, however, reducing
material parameter compliance.



Chapter 6

Implementation

The majority of the implementation is written with C++. The solver and
projection steps are implemented as described in the previous chapters and
parallelised using OpenMp. The project is built with the CMAKE utility
and has been configured to compile on both Windows and Linux. This gives
us the option to easily switch to a different compiler such as PGI-compiler
which supports the latest OpenAcc version. OpenAcc like OpenMp uses
pre-processor directives to create kernel programs usually from for loops
which can then be executed concurrently. Unlike OpenMp OpenAcc gen-
erates CUDA-binaries and as such they can be executed on the graphics
processor instead of the CPU.

6.1 Model Handeling

For any set of particle we can generate shape-matching groups based on
proximity and coverage, or simply create a shape-matching group per parti-
cle. However, in order to place the rods we need a direction of anisotrophy
defined for each particle. We do this by manually inserting a spine into the
material. This spine can either be a line or a tree-graph which means that
every point on the line except the root has a parent. For any particle we
can now define its direction of anisotrophy as the average direction of the
spine within a certain radius 𝑟. For a particle at the position x we define its
relative distance 𝜅𝑖 to a spine-particle 𝑖 as:

𝜅𝑖 = ‖x− x𝑖‖2
𝑟

(6.1)

Based on the relative distance we can define how much weight 𝑤 the direction
that is associated with this particular particle should carry. We define weight
as 𝑤𝑖 = 𝐾(𝜅𝑖), where 𝐾 is a kernel function, currently we use a simple
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cubic kernel function 𝐾(𝜅) = (1− 𝜅)3. The direction of the spine-particle 𝑖
is linearly approximated by subtracting the position of the parent particle,
𝑝𝑎𝑟(𝑖):

𝑑𝑖 = 𝑤𝑖

(x𝑖 − x𝑝𝑎𝑟(𝑖))
‖(x𝑖 − x𝑝𝑎𝑟(𝑖))‖2

(6.2)

Then we can define the anisotrophy direction of any particle as the average
of the weighted direction of all spine-particles within the radius 𝑟:

𝑑(x) = 1
|𝑆|

∑︁
𝑖∈𝑆

𝑑𝑖 (6.3)

where 𝑆 is the set of all spine-particles that are within a radius, 𝑆 = {𝑖 :
‖x𝑖−x‖ < 𝑟∧𝑝𝑖 ∈ S} and S is the set of all spine-particles. Of course, this re-
quires that a spine particle is within the radius of every object-particle.

We load and compute the anisotrophy direction along with other properties
such as particle-mass, normals, tangents and bitangents and fixed-position-
flag in Houdini. Some objects like tree-models often already include spine
information thus we can set up a template-project that makes use of this
information. Then during runtime we can use the Python-API to load dif-
ferent objects directly from our application. For objects that do not already
provide spine information the user needs to edit this object once. In order
to call into Pyhton code from C++we utilize the default Python bindings
for C++to start a Python interpreter when we need it. This allows us not
only to load different objects directly from within our application but also
make use of Houdinis vast function library. For example, we can create and
query signed distance fields then change the sampling density dynamically
without adding any library dependencies into C++.

6.2 Rod and Particle Group Placement

Currently we employ a simple greedy strategy to place the rods along the
previously defined anisotrophy direction. As can be seen in the screen-shots,
fig. 6.2a, this creates rod-structure that covers only about 80% of all the
particles. Due to the large radii of the shape-matching the rods are still held
together however a higher rod-coverage might further improve stiffness and
other placement strategies should be investigated.

For the oriented-particle we create a shape-matching group for every parti-
cle. This yield to significant amount of redundant computation which can
be reduced by fast-summation techniques as described in section 3.3.2. An-
other approach is create more efficient clusters that are based on coverage
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Figure 6.1: Meshing based on shape-matching groups provides enough de-
tails for a coarse mesh-representation. Reprinted from Choi (2014).

and density. As described in Jones et al. (2015) clustering can not only sig-
nificantly reduce computational expense by reducing the total number of
shape-matching groups but can also be used for collision detection.

6.3 Visulization

We extended an OpenGL-Framework written by Torsten Hädrich. The frame-
work provides a basic user interface as well as common real-time shading
techniques such as Phong-shading, shadow-maps, point and spot lighting.
This allows us to adjust parameters like, stiffness, solver iterations or time
step size during the simulation. Figure 6.2 shows a few parameters that
can be visualized for testing and debugging. Other parameters include the
principal-strain or fracture direction. Visualization of a mesh is not yet
supported but will be based on the shape-matching groups. Every shape-
matching group then has its own mesh that can be fixed to it by skin-
ning. This approach was already proven to be sufficient by Choi (2014),
fig. 6.1.
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(a) Low particle density

(b) High particle density

(c) Particles and their Orientations

(d) Rods and their orientations

Figure 6.2: Visualization of different parameters along the object.



Chapter 7

Results & Future Work

Figure 7.1 shows an image sequence of a simulation. Due to limited time
we used a simple maximum stretch fracture criterion and then removed
all constraints that violate the criterion. Using principal strain (or stress)
fracture criterion as described in section 4.2.2 would allow for a more fine-
tuned constraint-removal as this criterion also provides a fracture direction
which can be used to split oriented particle groups. As also evident from the
image sequence our implementation is still unrefined so the difference would
probably not yet be visible.

7.1 Adaptive Fracture refinement

Note that the coarse fracture in fig. 7.1 already exhibits a jagged fracture
one would expect from bending timber beyond its failure point. The missing
mesh makes it difficult to see the fracture-plane however, it is save to assume
that it is rather crude due to the coarse sampling. The sampling density
needed for a refined fracture surface is far beyond the sampling density
viable for interactive simulation. This is true for any interactive fracture
model and thus there have been two options to address this issue (1) adaptive
simulation resolution and (2) procedural fracture refinement.

Adaptive resolutions are difficult as the change in resolution should not
change the dynamic response of the overall object. For mesh based ap-
proaches like FEM this requires to split existing elements into multiple
smaller elements. For example, Bender et al. 2013 extend the

√
3-refinement

strategy to perform a 1-3-split of triangle meshes by inserting additional ver-
tices in the center of a triangle element. Further they derive a join operation
to allow for mesh coarsening as well. Pfaff et al. (2014) also work on thin
sheets but they refine only the region around the fracture tip and only work
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Figure 7.1: Image sequence taken from the simulation of a beam shaped
object.

with use edge collapses, edge flips and edge splits. This allows them to keep
most of the model at a coarse sampling-density and only refine the region
that is of visual interest. Lipponer et al. (2014) describe an adaptive fracture
resolution for tetrahedral elements. However, due to the Gauss-Seidel fash-
ion solver the convergence rate and thus elastic response of a PBD-system
heavily depends on the particle resolution. Any increase in resolution will
reduce the stiffness of the model further, making these fracture refinement
methods impractical.
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(a) 10 iterations (b) 50 iterations (c) 250 iterations

Figure 7.2: Effect of iteration count on objects’ stiffness.

Chen et al. (2014) proposed to refine the coarse fracture created by an in-
teractive simulation with procedural or texture driven noise. This allows for
a more lightweight approach and might be a good match for our simulation
approach.

7.2 Global Position Solver

The only external force that is applied for the simulation in fig. 7.1 is grav-
ity. The beam simply bends under its own weight exhibiting very little stiff-
ness. As we are trying to simulate wood which can usually hold not only
its own weight but also a significant amount of addition load this stiffness
is insufficient. Figure 7.2 shows how iteration count effects the stiffness of
the object. This clearly illustrates that the chosen Gauss-Seidel solver is ill
suited to simulate stiff materials. Further iterations on this approach should
explore global or partial-global solver as introduced in projective dynamics,
section 3.2.7, or used in most force based approaches, as this evaluation is
beyond the scope of the thesis.

7.3 Conclusion

In this bachelor thesis an overview of continuum mechanics was given and
numerous recent methods of interactive dynamic simulation and fracturing
were summarized. Among these the PBD based Cosserat rod simulation,
which provides time-step independent and robust results, and a solid simu-
lation based on oriented particles, which can be utilized even for co-planar
particle sets, were presented. By combining these two approaches we were
able to create an anisotropic material model inspired by the natural structure
of wood. By employing scattered rods our approach can reproduce varying
degrees of anisotropy and is independent of the objects shape. First pro-
totypes verify that the resulting fracture exhibits jagged fracture planes as
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expected from these kind of materials. However, they also illustrate that the
chosen PBD solver unable to provide materials stiffnesses one would expect
from wood within reasonable iteration counts. Overall we believe this to be
a strong foundation for the interactive simulation of anisotropic materials
and encourage future works to improve on the convergence problem.
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