
Data Oriented Design

ORGANIZING DATA FOR EFFICIENT PROCESSING

GERMANY, 2016

BY

JAN SCHEFFCZYK

JANA DEUFEL

Fachhochschule Bingen

Contents

1 Abstract 1

2 A simple example 2

2.1 CPU Caches . 3

2.2 Designing around the ideal data 6

2.3 Key-Value model . 6

3 Data Oriented design put to the test 8

3.1 Considering the expenses . 9

3.2 Test results . 11

4 Final considerations 13

4.1 Maintenance . 13

4.2 Parallelization . 13

4.3 Testing . 14

4.4 Drawbacks . 14

1 Abstract

Within the last few decades CPU performance doubled almost annually, leav-

ing the memory performance lacking behind. While new memory generations

generally increase the total data throughput, the latency decrease is marginal

at best. This disparity makes it difficult to reach a high CPU utilization, which

can presently only be achieved by minimizing uncached memory reads, thus

avoiding the latency-bottleneck.

Figure 1: Processor-Memory Performance Gap [6]

This is the area Data Oriented design operates in. It focuses on the data, it’s

type, how it is laid in memory, and how it will be read and transformed. It

bundles data and their transformation at the lowest possible level. This stands

in direct contrast to more classical program-paradigms like Object-Oriented-

Programming. Objects and their operations are bundled at a high abstraction

level which often do not apply on hardware level, thus reducing the likelihood of

an efficient implementation. Data Oriented design also promotes easier paral-

lelization, high modularity, ease of testing and an excellent performance.

1

2 A simple example

The following example illustrates the fundamental idea of data oriented design.

Suppose one wishes to access every element in a two-dimensional array. Two

obvious possibilities come to mind:

(a) Row Major (b) Column Major

The runtime complexity for both is O(n2), so equal performance is expected.

The actual runtime-performance differs greatly however, as can be seen in figure

3. One should recognize that this difference can not be understood from a high

level and abstract perspective.

”Understand the data to understand the problem” Mike Acton

Figure 3: Row/Col Major with highlights for the cache line 1

2

2.1 CPU Caches

The hardware component that causes the observed performance difference is

the CPU Cache. Caches are special memory-modules which feature very low

latency to reduce the initial problem of the processor-memory performance gap,

at the cost of capacity. the cache is organized in a hierarchical manner. For each

core there is a first level data cache (L1 DCache) and a second level cache(L2

Cache). The third level cache is usually shared across all cores which can results

not only in coherency problems2. Most modern CPUs use 3 cache levels of which

the first level is the smallest and fastest. Instead of loading data directly from

the main-memory the CPU will load the data from the cache. If the needed

data is currently stored in the cache (cache-hit) the data can be rapidly loaded

into the CPU. If it is not (cache-miss), the data needs to be fetched from the

next higher instance. The level 1 cache will acquire it’s data from the level 2

cache and so on until cache hit or eventually main memory is reached. The

data will be stored in a cache entry (write back) which consists of a section that

stores the actual data called cacheline, a section that stores some of the physical

memory address so future request can be identified and mapped to this entry

called tag and some status bits. Since caches are fairly small it’s content gets

replaced quickly. So even if the instructions for a certain task have been loaded

into the cache other tasks will replaces the original instructions. By the time

the first task is called all it’s instructions may already be replaced.

Tag Cache line

Fl
ag

s

Cache entry

Figure 4: Cache entry

Notice that a cache entry always stores a full

cache line i.e. even if only a single byte is

needed a full cacheline is fetched from mem-

1 Tests have been performed on a i7-4790K and 16GB DDR3 OS win7. The test program

has been written in Java and is given in [1]

2 The L3 Cache differentiates between 3 Cache hits, hit unshared, hi shared, hit modified

3

ory, which is typically 64Bytes3. Thus the data in close proximity of the re-

quested memory-address is now also in the cache. Ideally all data that was

fetched is actually needed for the current or an imminent instruction. A data-

format that would enable such processing would be the ideal-data. This is

realized by organizing the needed data in a continuous in section of memory.

One very powerful tool to organize data in such a manner is an array.

”I don’t know [data structure], but I know an array will beat it.” Scott Mayers

Now the initial example can be understood. As seen in figure 5a the first four

data-sets are stored within the first cacheline i.e. each access is routed to this

cacheline, only causing a single cache miss. Therefore the whole Row-Major

traversal only provokes further fetching of a new cachelines in step 5,9,13. Even

better those cache misses can be eliminated by a process known as pre-fetching

that will fetch data before it is needed. The compiler takes care of pre-fetching,

however this is only possible if a simple access pattern, such as a linear array

traversal, is used.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Cache lines

(a) Row Major

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Cache lines

(b) Col Major

Figure 5: Row/Col Major with highlights for the cachelines

3 The cacheline size depends on the hardware and can differ from system to system. Mobile

CPUs might have L1 cachelines of 32B and L2 cachelines of diffrent sizes [2]

4

In figure5b can be seen that the Col-Major provokes a cache miss on every

step4. These cache misses cause the performance difference observed in figure

3. In fact memory and cache access is one of the most common and devastating

bottlenecks in modern programming.

Cache Size Cachelines Event Cycles
L1 32KB 64 Bytes cache hit 4
Instruction 32KB N/A N/A N/A
L2 256KB 64 Bytes cache hit 12
L3 varies 64 Bytes cache hit unshared 26-31

shared in other core 43
modified in other core 60
miss remote access 100-300

Table 1: Cache latencys for the 6th gen of i7 intel processors [5]

In summery large blocks of contiguous, homogeneous data that will be pro-

cessed sequentially will keep the CPU busy. Where as fragmented data ac-

cess or instructions will cause cache misses which in turn result in wasted cpu-

times.

The implications for programmers can be condensed into three simple guidlines

[7]:

• Small ≡ fast

• Locality counts, stay in cache

• Predictable access patterns, to improve pre-fetching

4 This is only true for matrices that are so large that the first cacheline has been replaced

before it is needed again.

5

2.2 Designing around the ideal data

The goal of data oriented design is to format input data in such a way that it can

be efficiently processed. For current generations of CPUs the ideal data format

consists of continuous and homogeneous memory layout as can be seen in figure

6a. Objects (OOP) on the other always form tree-structures because of their

hierarchical nature (e.g. Inheritance-tress, containment trees, messaging trees).

Tree generate a fragmented call structure, as can be seen in figure 6b, resulting

in a frequent change of operations on different data i.e. both I-and-D-Cache

data will be rapidly replaced causing cache misses.

C C C

A A A

B B B

D D D

DOD call sequence
A, A, A, …
B, B, B, …
C, C,C, …

...

...

...

...

(a) DOD Callsequence

A

B D

E FC

OO call sequence
A,B,C,D,E,F,
A,B,C,D,E,F,
A,B,C,D,E ...

(b) OO Callsequence

Figure 6: Call seq object oriented and data oriented [8]

To achieve the best possible data-layout it is often required to break down each

object and isolate their components and then group components of the same

type together.

2.3 Key-Value model

The principle of keys and values is often utilized in programming tasks. When

searching for an entry the keys in the table and the searched key need to be

compared until a match has been found. Remember that on a cache miss a

full cache line will be fetched and stored so the rest of the cache line will be

6

filled with the values attached to key. This data however is only needed when

the current key is the one that is searched for, which is highly unlikely. The

common case the next key is required for further comparisons.

One task that realizes this concept would be the modeling of car. A car object

would contain attributes like id, weight, height, maxSpeed, etc. where the id

represents the key and the other attribute represent the values. Classes store

all their fields in the same memory location thus when the id is loaded the rest

of the cache line is filled with the object’s attributes. The search for a specific

car object within a continuous data-structure is the exact same procedure as

described above. This structure will scale towards the worst case regarding

cache-misses and therefore performance.

Keys Values

Figure 7: [3]

To form the ideal data structure the object

needs to be separated into two groups, a key

array that will store the ids and a value ar-

ray that will store the rest of the object’s-

attributes. Each will have it’s separate con-

tinuous piece of memory. To find the right index the key-array will be traversed

and only data that is actually needed, the keys, will be stored in the D-cache.

Once the correct key is found the index can be used to gather the corresponding

data, from the value array, as is illustrated in figure 8.

Keys

Values

Find Key Index

Get Value

Value

Key

Figure 8: Improved key-value structure [3]

7

3 Data Oriented design put to the test

A linear search optimization is a rather specific example, a more general ap-

proach is considered next. An arbitrary method represented by the move()

method of the car object, is considered and then a more hardware friendly

version is discussed.

The object oriented car class can be examined in Code1. To simplify and con-

dense the code for the example irrelevant attributes like id, weight, and so on,

have been reduced into a single variable (unrelatedData) which will take up as

much space as the individual attributes would have taken. In the object ori-

ented approach all attributes for a specific car are stored within a car object as

well as the method operate on this data.

class Car{

vec3 position;

vec3 speed;

// 1 : data that is not relevant to the move () method

char unrelatedData [256];

void move (){

position.x += speed.x;

position.y += speed.y;

position.z += speed.z;

}

// 2: other methods

}

Example Code 1: Car class

To solve the same task in a data oriented manner the method and it’s data

need to separated from the class. When extracting a method the relevant input

data needs to be identified first. In this case all unrelated data have already

been masked. Position and speed data need to be separated from the car class

and managed independently. In the next step the output data needs to be

considered, in this case the updated position. There are different choices for the

organization of input and output data.

One option is to create a wrapper for both input and output parameters. The

8

input wrapper holds position and speed data and the output wrapper stores the

updated position. The extracted method takes an array of input data, an array

of output data and the size of the arrays. This is a common practice when the

language of choice does not support classes but is just as valid otherwise.

struct InputMove {...}

struct OutputMove {...}

void moveAll(int size , InputMove inputs[], OutputMove outputs []){...}

Example Code 2: The DOD approach

Another option is store the data in a manager object. The data itself is then

stored directly in arrays, or another continuous data structure, as seen in Code2.

Note that the use of the manager is not limited to the car class but rather to all

objects that need to be moved in this manner. The data oriented Car object can

add itself to the ManageMove to ensure that it is being processed, in this case

moved. Through the returned index the object can access the current position

and speed data.

class ManageMove{

vec3 positions [];

vec3 speeds [];

unsigned int void add(vec3 pos ,vec3 speed){...}

void moveAll (){...}

}

Example Code 3: DOD approach with wrapper

3.1 Considering the expenses

To evaluate the expenses it also matters how the method is accessed. The object

oriented approach iterates through all cars and calls the update() method(Code

Example 4). This is a fairly common approach however it yields the worst per-

formance. In a typical hierarchy the root class defines an update() method and

each subclass overwrites it providing a unique implementation where various

9

methods are called including move(). Therefore every call to an update() ex-

ecutes a different tasks which in turn requires different instructions. This will

almost ensure that the I-cache has been completely replaced thus every call of

move(), or any other method in fact, will cause an I-Cache miss. The instruc-

tions need to be loaded from memory which will cause 100-300 cycles of waiting.

for (Car c : cars)

// updates everything within the object that needs to be updated

// among them is the move () method

c.update ();

}

Example Code 4: general update method

The data oriented approach simply calls moveAll() method on the manager ob-

ject. Therefore the same instructions on all the data of the manager is used.

Thereby only a single I-cache miss is generated for moving all objects. One

might could further optimize this approach by explicitly using SIMD5 opera-

tions.

P
os

iti
on

Unrelated Data

S
pe

ed

Cache line Car object

P
os

iti
on Unrelated

Data

S
pe

ed

P
os

iti
on

Unrelated Data

S
pe

ed

P
os

iti
on Unrelated

Data

S
pe

ed

Figure 9: Car object

Cache line

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

S
pe
ed

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

P
os
iti
on

Figure 10: ManageMove Obj

One might argue that similar results can

be achieved in object orientation by defin-

ing an interface Moveable. Creating a data-

structure of the type Movable would allow

to call the move() method for all objects no

matter the actual type. However this would

also neglect some of the object oriented no-

tion that every object knows how to update

itself. Further this would also break object

encapsulation in a sense.

Next the D-cache misses need to be consid-

ered which depend on how the Car class is

5 Single Instruction Multiple Data

10

allocated (as in code example1). If the allocation is scattered each access will

provoke a D-cache miss. However even if the allocation is in a continuous man-

ner and the method is accessed as in code example 4 the cache lines will store

not only the needed but also the unrelated data ,as can be seen in figure 9.

Thus if the object holds additional data the performance will degrade until the

unrelated data will fill up the rest of the cache line. If the method needs data

from other objects each access will yield another D-cache miss.

Again in the case of the ManageMove object only actually needed data is loaded

thus all cache misses but the first are avoided (figure 10). Further more a simple

access pattern was created that can easily pre-fetched. The unrelated data from

the original class would be split up into other managers that perform operations

on that data.

3.2 Test results

Because I-Cache misses are difficult to recreate in a closed test environment

only D-Cache misses have been tested. The test have been performed on three

different compilers which were set to highest optimization level respectively.

As can be seen in figure 11 even in this very simple test the differences are

substantial. The code for the test can be found in reference [1].

Large data fields are usually not stored directly in objects therefore a maximum

size of 256Bytes for the unrelated data array has been chosen, figure 12b.A fur-

ther increase of unrelated data results in further performance penalties however

not nearly as steep as the first 256Bytes.

11

Figure 11: Test result with 256 Bytes of unrelated Data

(a) 64 Bytes of unrelated Data (b) Progression from 256Bytes to 0

12

4 Final considerations

4.1 Maintenance

By separating methods and data from objects, highly independent structures

are created. All the data needed to perform a task is stored directly in the

manager object. These compact, single purpose manager object are easy to un-

derstand and modify because there are no further dependencies to other objects.

An object oriented code base is highly hierarchical which introduces not only

dependencies within each sub-tree but also dependencies between other objects.

To understand a moderately complex application it is almost always required

to consider data from a multitude of classes.

Also the context free approach allows for code reuse independent of application

and context as long as the problem, thus the data transformation, is the same.

Object orientation binds context to data in form of objects which can in turn

hinder code reuse.

4.2 Parallelization

To take advantage of the higher core-count of modern CPUs multi-threading

becomes increasingly important. Synchronizing object oriented code correctly

without unnecessary blocking is very difficult and leads to locking of data to

prevent concurrent access. This does not only add overhead it may also block

threads leaving the CPU idling.

If every manager runs in a separate thread only the execution order needs to

be synchronized. There is no need for any data synchronization since all data

is independent. It is even easier to instantiate multiple threads within a single

manager object. Then manager has a single task and a lot of data that all

needs to be processed in the same manner. This is the perfect SIMD scenario

and follows the same approach as GPU processing. In case of the ManageMove

13

class each thread could run on it’s own part of the array which guarantees that

there will be no concurrent data access.

4.3 Testing

The independent entities also result in easy testing. Valid data can be gener-

ated and used as test input the output is checked to see if the transformation

was correct. There are no hidden dependencies since all input data has been

identified, this allows to test the complete algorithm.

4.4 Drawbacks

As discussed previously data oriented design differs heavily from the most com-

mon programing paradigm, object orientation. It is taught in most schools and

universities. Thus most programs who read data oriented code for the first time

will be confused as it differs from what they are used to.

It can also be challenging to interface with existing object oriented or procedural

code. Data oriented design is often applied to a whole subsystem which will then

be interfaced. This will still yield most of the data oriented benefits.

Furthermore data oriented design can lead to higher development costs due

to the difficulty of writing perfectly isolated code. It also requires higher ex-

pertise from the developer especially if software for specific hardware is devel-

oped.

14

References

[1] Program code for the tests. https://gitlab.jan.m1234.de/jan/

DataOrientedDesignTestsl.

[2] Qualcomm krait 300. http://www.7-cpu.com/cpu/Krait.html. cppcon [Online;

accessed July 18, 2016].

[3] Mice Acton. Data-oriented design and c++. https://github.com/CppCon/

CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%

20C%2B%2B, 2014. cppcon [Online; accessed July 18, 2016.

[4] Richard Fabian. Data-oriented design). http://www.dataorienteddesign.com/

dodmain/l, 2009. [Online; accessed July 18, 2016].

[5] Agner Fog. Lists of instruction latencies, throughputs and micro-operation break-

downs for Intel, AMD and VIA CPUs. Technical University of Denmark,

2016. http://www.agner.org/optimize/instruction_tables.pdfl [Online; ac-

cessed July 18, 2016].

[6] John L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, 2011.

[7] Scott Meyers. Cpu caches and why you care. https://github.com/CppCon/

CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%

20C%2B%2B, 2014. code::dive conference [Online; accessed July 18, 2016.

[8] Noel. Data-oriented design (or why you might be shooting yourself in the foot with

oop). http://gamesfromwithin.com/data-oriented-designl, 2009. [Online; ac-

cessed July 18, 2016].

15

https://gitlab.jan.m1234.de/jan/DataOrientedDesignTestsl
https://gitlab.jan.m1234.de/jan/DataOrientedDesignTestsl
http://www.7-cpu.com/cpu/Krait.html
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
http://www.dataorienteddesign.com/dodmain/l
http://www.dataorienteddesign.com/dodmain/l
http://www.agner.org/optimize/instruction_tables.pdfl
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
https://github.com/CppCon/CppCon2014/tree/master/Presentations/Data-Oriented%20Design%20and%20C%2B%2B
http://gamesfromwithin.com/data-oriented-designl

	Abstract
	A simple example
	CPU Caches
	Designing around the ideal data
	Key-Value model

	Data Oriented design put to the test
	Considering the expenses
	Test results

	Final considerations
	Maintenance
	Parallelization
	Testing
	Drawbacks

